Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.22
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2010, vol. 47, nr 3, July-September, p. 328–333

Publication type: original article

Language: Polish

Wrażliwość bakterii mikroaerofilnych na Salviasept®

Sensitivity of Microaerophilic Bacteria to Salviasept®

Anna Kędzia1,, Barbara Kochańska2,, Barbara Molęda-Ciszewska3,, Anna Wojtaszek-Słomińska4,, Aida Kusiak3,, Alina Gębska1,, Marta Ziółkowska-Klinkosz1,

1 Zakład Mikrobiologii Jamy Ustnej, Katedra Mikrobiologii Gdańskiego Uniwersytetu Medycznego

2 Katedra i Zakład Stomatologii Zachowawczej Gdańskiego Uniwersytetu Medycznego

3 Katedra i Zakład Periodontologii i Chorób Błony Śluzowej Jamy Ustnej Gdańskiego Uniwersytetu Medycznego

4 Zakład Ortodoncji Gdańskiego Uniwersytetu Medycznego

Streszczenie

Wprowadzenie. Drobnoustroje mikroaerofilne, które rosną w warunkach zmniejszonej zawartości tlenu są obecne w jamie ustnej. Wśród nich są bakterie z rodzaju: Aggregatibacter, Campylobacter, Capnocytophaga, Eikenella, Rothia, Wolinella i Corynebacterium (niektóre gatunki). Te drobnoustroje są związane z chorobami przyzębia i zapaleniem dziąseł. Wytwarzają wiele enzymów, cytotoksyn i czynników wirulencji, które mogą odgrywać główną rolę w uszkodzeniu tkanek gospodarza. Wiele bakterii, patogennych dla tkanek przyzębia, wytwarza różne czynniki, które mogą hamować chemotaksję wielojądrzastych leukocytów. Leki ziołowe są często stosowane profilaktycznie i w leczeniu zakażeń w obrębie jamy ustnej. Wśród preparatów jest Salviasept®, który działa przeciwdrobnoustrojowo i przeciwzapalnie.
Cel pracy. Oznaczenie aktywności Salviaseptu wobec mikroaerofilnych bakterii.
Materiał i metody. Bakterie mikroaerofilne zostały wyizolowane z patologicznych kieszonek (19 materiałów), kanałów korzeniowych (9) i owrzodzeń jamy ustnej (4). Wrażliwość bakterii oznaczono metodą seryjnych rozcieńczeń w agarze Brucella z dodatkiem 5% krwi baraniej. Inoculum zawierające 105 CFU/kroplę nanoszono na powierzchnię agaru aparatem Steersa. Inkubację posiewów prowadzono w anaerostatach (warunki mikroaerofilne) w 37°C przez 48 godz. Za MIC uznano takie najmniejsze stężenie Salviaseptu, które całkowicie hamowało wzrost bakterii.
Wyniki. Z badań wynika, że najbardziej wrażliwe na Salviasept były szczepy Aggregatibacter (MIC ≤ 0,15–0,62 mg/ml, dla 60% szczepów). Pałeczki Eikenella i Campylobacter okazały się mniej wrażliwe. Wzrost 40 i 22% szczepów był hamowany przez stężenia w zakresie ≤ 0,15–0,62 mg/ml. Szczepy należące do rodzaju Capnocytophaga były najmniej wrażliwe na Salviasept. Wzrost tych szczepów był hamowany w stężeniach od 2,5 do > 5,0 mg/ml.
Wnioski. Najbardziej wrażliwe na Salviasept były szczepy Aggregatibacter, a najmniej wrażliwe szczepy Capnocytophaga.

Abstract

Background. Microaerophilic bacteria which require decreased oxygen value are present in oral cavity. Among the genus there are Aggregatibacter, Campylobacter, Capnocytophaga, Eikenella, Rothia, Wolinella and Corynebacterium (some of the species). These bacteria are associated with periodontal diseases and gingivitis. They produce enzymes, cytotoxins and virulence factors that play a direct role in the damage of host tissues in the periodontal pockets. Several periodontal pathogens produce illdefined molecules that can inhibit the chemotaxis of polymorphonuclear leucocytes. The herbal drugs are frequently administered prophylactically and for treatment of oral cavity infections. Among the drugs there is Salviasept®, which exhibits, antimicrobial and antiinflammatory properties.
Objectives. The aim of the study was to determine the activity of Salviasept against microaerophilic bacteria.
Material and Methods. The microaerophilic bacteria were isolated from pathological pockets (19 samples), root canal (9) and oral ulcers (4). The susceptibility of bacteria was determined by means of the agar dilution technique in Brucella agar supplemented with 5% sheep blood. The inoculum of 105 CFU/spot was applied to agar plates with Steers replicator. Incubation was performed in anaerobic jars (microaerophilic conditions) at 37°C for 48 hrs each. The MIC was defined as the lowest concentration that inhibited growth of bacteria.
Results. The obtained data showed that the most susceptible to Salviasept were the strains of Aggregatibacter (MIC ≤ 5–0.62 mg/ml for 60% strains). The strains of Eikenella and Campylobacter were less sensitive to the specimen. The growth of 40 and 22% of strains were inhibited by concentrations ≤ 0.15–0.62 mg/ml. The strains of rods belonging to genera Capnocytophaga were the least sensitive to Salviasept. The growth of these strains were inhibited in concentrations 2.5 to > 5.0 mg/ml.
Conclusion. The most susceptible to Salviasept were the strains of Aggregatibacter and the least sensitive strains of Capnocytophaga.

Słowa kluczowe

bakterie mikroaerofilne, jama ustna, Salviasept

Key words

microaerophilic bacteria, oral cavity, Salviasept

References (37)

  1. Ferrini A.M., Mannoni V., Hodzic S., Salvatore G.: Antimicrobial activity of bergamot oil in relation of chemical composition and different origin. Riv. Ital. EPOS (Spec. num.) 1998, 9, 140–150.
  2. Biondi D., Cianci P., Ruberto G., Piatelli M.: Antimicrobial activity and chemical composition of essential oil from Sicilian aromatic plants. Flavour. Fragr. J. 1993, 8, 331–337.
  3. Zanii F., Massimo G., Benvenutis S., Bianchi A., Albasini A., Melegari M., Vampa G., Bellotti A., Mazza P.: Studies on the genotoxic properties of essential oils with Bacillus subtilis re-assay and Salmonella microsome revision assay. Planta Med. 1991, 57, 237–241.
  4. Kalemba D., Kunicka A.: Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829.
  5. Inouye S., Yamaguchi H., Takizawa T.: Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother. 2001, 7, 251–254.
  6. Hammer K.A., Carson C.F., Riley T.V.: Antibacterial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990.
  7. Chao S., Young G., Oberg C., Nakaoka K.: Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour. Fragr. J. 2008, 23, 444–449.
  8. Inouye S., Takizawa T., Yamaguchi H.: Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 563–573.
  9. Griffin S.G., Wyllie S.G., Markham J.L., Leach D.N.: The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour. Fragr. J. 1999, 14, 322–332.
  10. Crociani F., Biavatti B., Alessandrini A., Zani G.: Growth inhibition of essential oils and other antimicrobial agents towards Bifidobacteria from dental caries. 27th Int. Symp. on Essential Oils. Vienna 1996, Sept. 8–11, 40–44.
  11. Filoche S.K., Sissons S.K.: Antimicrobial effect of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225.
  12. Claffey N.: Essential oil mouthwashes a key component in oral health management. J. Clin. Periodontol. 2003, 30, Suppl. 5, 22–24.
  13. Pitten F.A., Kramer A.: Antimicrobial efficacy of antiseptic mouthrinse solutions. Eur. J. Clin. Pharmacol. 1999, 55, 95–100.
  14. Charles C.H., Mostler K.M., Bartels L.L., Mankodi S.M.: Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6-month clinical trial. J. Periodontol. 2004, 31, 878–884.
  15. De Silva C.M., Colombo A.V., de Souto R.M., Colombo A.P.: In vivo evaluation of the effect of essential oil-containing oral strips on essential-containing oral strips on salivary bacteria using the checkerboard method. J. Clin. Dent. 2005, 16, 38–43.
  16. Charai M., Mosaddal M., Faid M.: Chemical composition and antimicrobial activities of two aromatic plants: Origanum majorana L., O. compactum Benth. J. Essent. Oil Res. 1996, 8, 657–664.
  17. Hili P., Evans C.S., Veness R.G.: Antimicrobial action of essential oils: the effect of dimethylsulfoxide on the activity of cinnamon oil. Lett. Appl. Microbiol. 1997, 24, 269–275.
  18. Deans S.G., Svoboda K.P.: The antimicrobial properties of majoran (Origanum Majorana L.) volatile oils. Flavour. Fragr. J. 1990, 5, 187–190.
  19. Morris J.A., Khettry A., Seitz E.W.: Antimicrobial activity of aroma chemicals and essential oils. J. Am. Oil Chem. Soc. 1979, 56, 595–603.
  20. Shapiro S., Meier A., Guggenheim B.: The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol. 1994, 9, 202–208.
  21. Friedman M., Henika P.R., Mandrell R.E.: Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560.
  22. Burt S.A., Reinders R.D.: Antibacterial activity of selected plant essential oils against Escherichia coli 0157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167.
  23. Pawar V.C., Thaker V.S.: In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses 2006, 49, 316–323.
  24. Maruzzella J.C., Sicurella N.A.: Antibacterial activity of essential oil vapors. J. Am. Pharm. Assoc. 1960, 49, 692–694.
  25. Nunez L., D’Aquino M., Chirife J.: Antifungal properties of clove oil (Eugenia caryophylata) in sugar solution. Braz. J. Microbiol. 2001, 32, 123–126.
  26. Aggag M.E., Yousef R.T.: Study of antimicrobial activity of chamomile oil. Planta Med. 1972, 22, 140–144.
  27. Shalontay M., Verzar-Petri G., Florian E., Gimpel F.: Weitere Angaben zur bakteriziden und fungiziden Wirkung zur biologisch aktiver stoffe von Matricaria chamomilla L. Pharm. Ztg. 1995, 120, 982–986.
  28. Kędzia A.: Wrażliwość (MIC) bakterii beztlenowych wyizolowanych z zakażeń jamy ustnej na preparat Azulan (Herbapol). Prot. Stomatol. 1997, 47, 2294–2297.
  29. Karamaneders C., Karabay N.U., Zeybek U.: Composition of the essential oils of some Achillea L. species in Turkey. Acta Pharmaceut. Turica 2002, 44, 221–225.
  30. Tajik H., Jolali F.S.S., Sobhani A., Shahbazi Y., Zadeh M.S.: In vitro assessment of antimicrobial efficacy of alcoholic extract of Achillea millefolium in comparison with penicillin derivatives. J. Animal Vet. Adv. 2008, 7, 508–511.
  31. Candan F., Unki M., Tepe B., Daferera D., Polission M., Sokmen A., Akpulat A.: Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium susp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220.
  32. Kędzia A., Kędzia A.W.: Działanie preparatu Salviasept na bakterie beztlenowe wyizolowane z zakażeń jamy ustnej i górnych dróg oddechowych. Post. Fitoter. 2004, 2, 67–70.
  33. Saeed S., Tariq P.: In vitro antibacterial activity of clove against Gram-negative bacteria. Pak. J. Bot. 2008, 40, 2157–2160.
  34. Imelouane B., Amhamdi H,. Wathelet J.P., Ankit M., Khedid K., El Bachiri A.: Chemical composition and antimicrobial activity of essential oil of Thyme (Thymus vulgaris) from Eastern Marocco. Int. J. Agri. Biol. 2009, 11, 205–208.
  35. Owlia P., Rasooli I., Saderi H.: Antistreptococal and antioxidant activity of essential oil from Matricaria chamomilla L. Res. J. Biol. Sci. 2007, 2, 155–160.
  36. Sakovic M.D., Vukojevic J., Marin P.D., Brkic D.D., Vajs V., van Griensven L.J.L.D.: Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249.
  37. Malik T., Singh P.: Antimicrobial effects of essential oils against uropathogenes with varying sensitivity to antibiotics. Asian J. Biol. Sci. 2010, 3, 92–98.