Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2021) – 132.50
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI (2021) – 0.5
Average rejection rate (2022) – 79.69%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

2023, vol. 60, nr 1, January-March, p. 13–22

doi: 10.17219/dmp/157457

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:

Al Maaitah EF, Al-Musfir TM, Abed Al Jawad F, Alhashimi N, Abu Alhaija ES. Upper airway dimensions and the skeletal parameters in orthodontic patients who developed moderate–severe COVID-19 symptoms during the pandemic. Dent Med Probl. 2023;60(1):13–22. doi:10.17219/dmp/157457

Upper airway dimensions and the skeletal parameters in orthodontic patients who developed moderate–severe COVID-19 symptoms during the pandemic

Emad Farhan Al Maaitah1,2,A,B,D,E,F, Tumadher Mohammed Al-Musfir1,B,D,E,F, Feras Abed Al Jawad1,C,D,E,F, Najah Alhashimi1,B,D,E,F, Elham Saleh Abu Alhaija3,A,B,C,D,E,F

1 Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar

2 Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan

3 College of Dental Medicine, Qatar University, Doha, Qatar


Background. Large airway dimensions are associated with a rapid decline in the lung function and a higher risk of hospitalization. Therefore, the airway dimensions of healthy subjects who tested positive for coronavirus disease 2019 (COVID-19) may be associated with the severity of COVID-19 symptoms.
Objectives. The objectives of this study were to measure the upper airway dimensions and the craniofacial skeletal parameters in patients who tested positive for COVID-19, to compare the upper airway dimensions and the craniofacial skeletal parameters between patients who developed no/mild symptoms and those with moderate–severe COVID-19 symptoms, and to assess any association of the skeletal relationships (anteroposterior (AP) and vertical) and the upper airway dimensions with the severity of COVID-19 symptoms in adult subjects.
Material and methods. A total of 204 orthodontic patients who tested positive for COVID-19 were evaluated. Of these, only 137 met the inclusion criteria. The sample was further subdivided into 2 groups based on the severity of symptoms: cases (moderate–severe symptoms; n = 56); and controls (asymptomatic/ mild symptoms; n = 81). The upper airway dimensions and the skeletal parameters were measured on lateral cephalograms. The nonparametric Mann–Whitney U test was used to detect differences between the cases and the controls. Binary logistic regression analysis was used to evaluate the association between the studied variables and the severity of symptoms.
Results. The cases had a reduced lower face height (LFH) and a reduced perpendicular distance from the hyoid bone to the line connecting the anteroinferior limit of the 3rd cervical vertebra (C3) and the retrognathion point (RGN) (HH1) as compared to the controls. Regression analysis revealed a significant association of LFH (p = 0.013), the vertical airway length (VAL) (p = 0.002) and HH1 (p = 0.021) with the severity of COVID-19 symptoms.
Conclusions. The types of malocclusion were similar in the cases and the controls. Patients with reduced LFH and VAL, and a superiorly positioned hyoid bone in relation to the mandible developed more severe COVID-19 symptoms.

Key words

symptoms, severity, skeletal, upper airway, COVID-19

References (39)

  1. Gorbalenya AE, Baker SC, Baric RS, et al.; Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. doi:10.1038/s41564-020-0695-z
  2. World Health Organization (WHO). Coronavirus disease 2019 (COVID-19): Situation report, 51. Accessed June 2, 2022.
  3. Del Rio C, Malani PN. COVID-19 in 2022 – the beginning of the end or the end of the beginning? JAMA. 2022;327(24):2389–2390. doi:10.1001/jama.2022.9655
  4. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  5. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): A review of clinical features, diagnosis, and treatment. Cureus. 2020;12(3):e7355. doi:10.7759/cureus.7355
  6. Duś-Ilnicka I, Krala E, Cholewińska P, Radwan-Oczko M. The use of saliva as a biosample in the light of COVID-19. Diagnostics (Basel). 2021;11(10):1769. doi:10.3390/diagnostics11101769
  7. Duś-Ilnicka I, Szymczak A, Małodobra-Mazur M, Tokarski M. Role of laboratory medicine in SARS-CoV-2 diagnostics. Lessons learned from a pandemic. Healthcare (Basel). 2021;9(7):915. doi:10.3390/healthcare9070915
  8. Flores-Quispe BM, Ruiz-Reyes RA, León-Manco RA, Agudelo-Suárez A. Preventive measures for COVID-19 among dental students and dentists during the mandatory social isolation in Latin America and the Caribbean in 2020. Dent Med Probl. 2022;59(1):5–11. doi:10.17219/dmp/142033
  9. Self WH, Tenforde MW, Rhoads JP, et al.; IVY Network. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions – United States, March–August 2021. MMWR Morb Mortal Wkly Rep. 2021;70(38):1337–1343. doi:10.15585/mmwr.mm7038e1
  10. Washington State Department of Health. COVID-19 Hospitalizations and Deaths by Vaccination Status in Washington State. February 13, 2023. Accessed June 2, 2022.
  11. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03.017
  12. Miller MA, Cappuccio FP. A systematic review of COVID-19 and obstructive sleep apnoea. Sleep Med Rev. 2021;55:101382. doi:10.1016/j.smrv.2020.101382
  13. Martynowicz H, Jodkowska A, Poręba R, Mazur G, Więckiewicz M. Demographic, clinical, laboratory, and genetic risk factors associated with COVID-19 severity in adults: A narrative review. Dent Med Probl. 2021;58(1):115–121. doi:10.17219/dmp/131795
  14. Paradowska-Stolarz AM. Oral manifestations of COVID-19: Brief review. Dent Med Probl. 2021;58(1):123–126. doi:10.17219/dmp/131989
  15. Balfour-Lynn IM, Davies JC. Acute infections that produce upper airway obstruction. Kendig & Chernick’s Disorders of the Respiratory Tract in Children. 2012:424–436. doi:10.1016/B978-1-4377-1984-0.00025-5
  16. Tooker AC, Hong KS, McKinstry EL, Costello P, Jolesz FA, Albert MS. Distal airways in humans: Dynamic hyperpolarized 3He MR imaging – feasibility. Radiology. 2003;227(2):575–579. doi:10.1148/radiol.2272012146
  17. Al Maaitah E, El Said N, Abu Alhaija ES. First premolar extraction effects on upper airway dimension in bimaxillary proclination patients. Angle Orthod. 2012;82(5):853–839. doi:10.2319/101711-646.1
  18. Aboudara C, Nielsen I, Huang JC, Maki K, Miller AJ, Hatcher D. Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2009;135(4):468–479. doi:10.1016/j.ajodo.2007.04.043
  19. Miles PG, Vig PS, Weyant RJ, Forrest TD, Rockette HE Jr. Craniofacial structure and obstructive sleep apnea syndrome – a qualitative analysis and meta-analysis of the literature. Am J Orthod Dentofacial Orthop. 1996;109(2):163–172. doi:10.1016/s0889-5406(96)70177-4
  20. de Freitas MR, Virmond Alcazar NM, Janson G, de Freitas KM, Castanha Henriques JF. Upper and lower pharyngeal airways in subjects with Class I and Class II malocclusions and different growth patterns. Am J Orthod Dentofacial Orthop. 2006;130(6):742–745. doi:10.1016/j.ajodo.2005.01.033
  21. Oelsner EC, Smith BM, Hoffman EA, et al. Prognostic significance of large airway dimensions on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis (MESA) lung study. Ann Am Thorac Soc. 2018;15(6):718–727. doi:10.1513/AnnalsATS.201710-820OC
  22. Jeans WD, Fernando DC, Maw AR, Leighton BC. A longitudinal study of the growth of the nasopharynx and its contents in normal children. Br J Radiol. 1981;54(638):117–121. doi:10.1259/0007-1285-54-638-117
  23. Dahlberg G. Statistical Methods for Medical and Biological Students. London, UK: George Allen & Unwin Ltd.; 1940.
  24. Worldometer. Accessed June 2, 2022.
  25. Kirkness JP, Krishnan V, Patil SP, Schneider H. Upper airway obstruction in snoring and upper airway resistance syndrome. Prog Respir Res. Basel, Karger. 2006;35;79–89.
  26. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188(8):996–1004. doi:10.1164/rccm.201303-0448OC
  27. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020;12(10):9959–9981. doi:10.18632/aging.103344
  28. Jin JM, Bai P, He W, et al. Gender differences in patients with COVID-19: Focus on severity and mortality. Front Public Health. 2020;8:152. doi:10.3389/fpubh.2020.00152
  29. Peckham H, de Gruijter NM, Raine C, et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun. 2020;11(1):6317. doi:10.1038/s41467-020-19741-6
  30. Gao M, Piernas C, Astbury NM, et al. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: A prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021;9(6):350–359. doi:10.1016/S2213-8587(21)00089-9
  31. Kang IS, Kong KA. Body mass index and severity/fatality from coronavirus disease 2019: A nationwide epidemiological study in Korea. PLoS One. 2021;16(6):e0253640. doi:10.1371/journal.pone.0253640
  32. Silva NN, Wanderley Lacerda RH, Cunha Silva AW, Ramos TB. Assessment of upper airways measurements in patients with mandibular skeletal Class II malocclusion. Dental Press J Orthod. 2015;20(5):86–93. doi:10.1590/2177-6709.20.5.086-093.oar
  33. Kirjavainen M, Kirjavainen T. Upper airway dimensions in Class II malocclusion. Effects of headgear treatment. Angle Orthod. 2007;77(6):1046–1053. doi:10.2319/081406-332
  34. Kim YJ, Hong JS, Hwang YI, Park YH. Three-dimensional analysis of pharyngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofacial Orthop. 2010;137(3):306.e1–e11. doi:10.1016/j.ajodo.2009.10.025
  35. Chokotiya H, Banthia A, K SR, Choudhary K, Sharma P, Awasthi N. A study on the evaluation of pharyngeal size in different skeletal patterns: A radiographic study. J Contemp Dent Pract. 2018;19(10):1278–1283. PMID:30498186.
  36. Li Q, Tang H, Liu X, et al. Comparison of dimensions and volume of upper airway before and after mini-implant assisted rapid maxillary expansion. Angle Orthod. 2020;90(3):432–441. doi:10.2319/080919-522.1
  37. Mortazavi S, Asghari-Moghaddam H, Dehghani M, et al. Hyoid bone position in different facial skeletal patterns. J Clin Exp Dent. 2018;10(4):e346–e351. doi:10.4317/jced.54657
  38. Arslan SG, Dildeş N, Kama JD. Cephalometric investigation of first cervical vertebrae morphology and hyoid position in young adults with different sagittal skeletal patterns. ScienticWorldJournal. 2014;2014:159784. doi:10.1155/2014/159784
  39. Shokri A, Mollabashi V, Zahedi F, Tapak L. Position of the hyoid bone and its correlation with airway dimensions in different classes of skeletal malocclusion using cone-beam computed tomography. Imaging Sci Dent. 2020;50(2):105–115. doi:10.5624/isd.2020.50.2.105