Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2021) – 132.50
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI (2021) – 0.5
Average rejection rate (2022) – 79.69%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

2022, vol. 59, nr 4, October-December, p. 531–538

doi: 10.17219/dmp/146038

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Yamakami SA, Faraoni JJ, Lia NSND, Regula FB, Ohyama H, Palma-Dibb RG. Effect of an experimental chitosan/casein gel on demineralized enamel under a cariogenic challenge. Dent Med Probl. 2022;59(4):531–538. doi:10.17219/dmp/146038

Effect of an experimental chitosan/casein gel on demineralized enamel under a cariogenic challenge

Shelyn Akari Yamakami1,2,A,C,D,E,F, Juliana Jendiroba Faraoni1,A,C,E,F, Nicolle San Nicolas Dubrull Lia1,B,D,F, Franciana Berzoti Regula1,B,C,D,F, Hiroe Ohyama2,D,E,F, Regina Guenka Palma-Dibb1,A,C,D,E,F

1 Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, Brazil

2 Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Harvard University, Boston, USA

Abstract

Background. Dental caries is considered one of the most common oral health diseases.
Objectives. The aim of the study was to evaluate the effects of an experimental chitosan/casein gel on enamel demineralization/remineralization in an environment with a high cariogenic challenge.
Material and methods. Thirty-six specimens of bovine enamel (4 mm × 3 mm × 2 mm) were ground flat and polished. Then, the specimens were immersed in acetate buffer for 43 h with half of the surface protected (serving as control) and the other half exposed. All demineralized surfaces were randomly assigned into 3 groups (n = 12 per group) according to the type of treatment (G1 – control, G2 – 1.5% chitosan gel with 1.5% casein, and G3 – 1.5% chitosan gel without casein), and the corresponding treatment was applied once a week for 3 weeks. The specimens were also subjected to pH cycles of demineralization/ remineralization and the treatments were performed 3 times at 7-day intervals for a total of 21 days. Surface images were obtained for the analysis of initial roughness and, after the cariogenic challenge, new images were obtained to evaluate the final roughness, volume loss and wear profile using laser confocal microscopy. After the analyses, the specimens were cut and the depth of demineralization was measured. The data were analyzed using the Kruskal–Wallis analysis of variance (ANOVA) and the Tukey’s test.
Results. While the chitosan gel with casein showed a similar loss to the control group (p > 0.05), both gels resulted in similar volume loss (p > 0.05). There were no statistical differences regarding the wear profile, surface roughness and depth of demineralization between the groups (p > 0.05).
Conclusions. The chitosan gel reduced volume loss of the demineralized enamel without significantly impacting the surface smoothness.

Key words

chitosan, dental caries, tooth remineralization, caseins, confocal microscopy

References (53)

  1. James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–1858. doi:10.1016/S0140-6736(18)32279-7
  2. Bounds AD, Girkin JM. Early stage dental caries detection using near infrared spatial frequency domain imaging. Sci Rep. 2021;11(1):2433. doi:10.1038/s41598-021-81872-7
  3. Zhang J, Lynch RJM, Watson TF, Banerjee A. Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pellicle. J Dent. 2018;72:21–28. doi:10.1016/j.jdent.2018.02.004
  4. Amaechi BT. Remineralisation – The buzzword for early MI caries management. Br Dent J. 2017;223(3):173–182. doi:10.1038/sj.bdj.2017.663
  5. Ormond C, Douglas G, Pitts N. The use of the International Caries Detection and Assessment System (ICDAS) in a National Health Service general dental practice as part of an oral health assessment. Prim Dent Care. 2010;17(4):153–159. doi:10.1308/135576110792936177
  6. Ricucci D, Siqueira JF. Bacteriologic status of non-cavitated proximal enamel caries lesions. A histologic and histobacteriologic study. J Dent. 2020;100:103422. doi:10.1016/j.jdent.2020.103422
  7. Philip N, Suneja B, Walsh L. Beyond Streptococcus mutans: Clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome. Br Dent J. 2018;224(4):219–225. doi:10.1038/sj.bdj.2018.81
  8. Bizhang M, Ellerbrock B, Preza D, et al. Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR. Oral Dis. 2011;17(7):642–652. doi:10.1111/j.1601-0825.2011.01815.x
  9. Richards VP, Alvarez AJ, Luce AR, et al. Microbiomes of site-specific dental plaques from children with different caries status. Infect Immun. 2017;85(8):e00106–e00117. doi:10.1128/IAI.00106-17
  10. Aoun A, Darwiche F, Al Hayek S, Doumit J. The fluoride debate: The pros and cons of fluoridation. Prev Nutr Food Sci. 2018;23(3):171–180. doi:10.3746/pnf.2018.23.3.171
  11. U.S. Department of Health and Human Services. Oral Health in America: A Report of the Surgeon General. Rockville, USA: U.S. Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health; 2000.
  12. Philip N. State of the art enamel remineralization systems: The next frontier in caries management. Caries Res. 2019;53(3):284–295. doi:10.1159/000493031
  13. El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, regeneration, and repair of natural tooth structure: Influences on the future of restorative dentistry practice. ACS Biomater Sci Eng. 2019;5(10):4899–4919. doi:10.1021/acsbiomaterials.9b00591
  14. González-Cabezas C, Fernández CE. Recent advances in remineralization therapies for caries lesions. Adv Dent Res. 2018;29(1):55–59. doi:10.1177/0022034517740124
  15. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–1197. doi:10.1177/0022034510376046
  16. Wierichs RJ, Carvalho TS, Wolf TG. Efficacy of a self-assembling peptide to remineralize initial caries lesions – A systematic review and meta-analysis. J Dent. 2021;109:103652. doi:10.1016/j.jdent.2021.103652
  17. Akgun OM, Haman Bayari S, Ide S, Guven Polat G, Yildirim C, Orujalipoor I. Evaluation of the protective effect on enamel demineralization of CPP‐ACP paste and ROCS by vibrational spectroscopy and SAXS: An in vitro study. Microsc Res Tech. 2021;84(12):2977–2987. doi:10.1002/jemt.23857
  18. Juntavee A, Juntavee N, Hirunmoon P. Remineralization potential of nanohydroxyapatite toothpaste compared with tricalcium phosphate and fluoride toothpaste on artificial carious lesions. Int J Dent. 2021;2021:5588832. doi:10.1155/2021/5588832
  19. Ali S, Farooq I, Al-Thobity AM, Al-Khalifa KS, Alhooshani K, Sauro S. An in-vitro evaluation of fluoride content and enamel remineralization potential of two toothpastes containing different bioactive glasses. Biomed Mater Eng. 2020;30(5–6):487–496. doi:10.3233/BME-191069
  20. Ma X, Lin X, Zhong T, Xie F. Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: A systematic review and meta-analysis. BMC Oral Health. 2019;19(1):295. doi:10.1186/s12903-019-0977-0
  21. Sionov RV, Tsavdaridou D, Aqawi M, Zaks B, Steinberg D, Shalish M. Tooth mousse containing casein phosphopeptide-amorphous calcium phosphate prevents biofilm formation of Streptococcus mutans. BMC Oral Health. 2021;21(1):136. doi:10.1186/s12903-021-01502-6
  22. Indrapriyadharshini K, Madan Kumar PD, Sharma K, Iyer K. Remineralizing potential of CPP-ACP in white spot lesions – A systematic review. Indian J Dent Res. 2018;29(4):487–496. doi:10.4103/ijdr.IJDR_364_17
  23. He L, Hao Y, Zhen L, et al. Biomineralization of dentin. J Struct Biol. 2019;207(2):115–122. doi:10.1016/j.jsb.2019.05.010
  24. Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020;162:956–974. doi:10.1016/j.ijbiomac.2020.06.211
  25. Ikono R, Vibriani A, Wibowo I, et al. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res Notes. 2019;12(1):383. doi:10.1186/s13104-019-4422-x
  26. Torres Toro CV, Faraoni JJ, de Matos LLM, Palma-Dibb RG. Efficacy of different strategies to treat root dentin eroded by liquid or gaseous hydrochloric acid associated with brushing abrasion. Arch Oral Biol. 2018;89:65–69. doi:10.1016/j.archoralbio.2018.02.005
  27. Queiroz CS, Hara AT, Paes Leme AF, Cury JA. pH-cycling models to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Braz Dent J. 2008;19(1):21–27. doi:10.1590/S0103-64402008000100004
  28. Amaechi BT, Higham SM, Edgar WM. Techniques for the production of dental eroded lesions in vitro. J Oral Rehabil. 1999;26(2):97–102. doi:10.1046/j.1365-2842.1999.00349.x
  29. Belli R, Rahiotis C, Schubert EW, Baratieri LN, Petschelt A, Lohbauer U. Wear and morphology of infiltrated white spot lesions. J Dent. 2011;39(5):376–385. doi:10.1016/j.jdent.2011.02.009
  30. Wang C, Fang Y, Zhang L, Su Z, Xu J, Fu B. Enamel microstructural features of bovine and human incisors: A comparative study. Ann Anat. 2021;235:151700. doi:10.1016/j.aanat.2021.151700
  31. Ayoub HM, Gregory RL, Tang Q, Lippert F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J Dent. 2020;96:103328. doi:10.1016/j.jdent.2020.103328
  32. Farooq I, Moheet IA, Imran Z, Farooq U. A review of novel dental caries preventive material: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complex. King Saud Univ J Dent Sci. 2013;4(2):47–51. doi:10.1016/j.ksujds.2013.03.004
  33. Chandak S, Bhondey A, Bhardwaj A, Pimpale J, Chandwani M. Comparative evaluation of the efficacy of fluoride varnish and casein phosphopeptide – Amorphous calcium phosphate in reducing Streptococcus mutans counts in dental plaque of children: An in vivo study. J Int Soc Prev Community Dent. 2016;6(5):423–429. doi:10.4103/2231-0762.192936
  34. Mekky AI, Dowidar KML, Talaat DM. Casein phosphopeptide amorphous calcium phosphate fluoride varnish in remineralization of early carious lesions in primary dentition: Randomized clinical trial. Pediatr Dent. 2021;43(1):17–23. PMID:33662244.
  35. Shen P, Fernando JR, Yuan Y, Walker GD, Reynolds C, Reynolds EC. Bioavailable fluoride in calcium-containing dentifrices. Sci Rep. 2021;11(1):146. doi:10.1038/s41598-020-80503-x
  36. Soares-Yoshikawa AL, Varanda T, Iwamoto AS, Kantovitz KR, Puppin-Rontani RM, Pascon FM. Fluoride release and remineralizing potential of varnishes in early caries lesions in primary teeth. Microsc Res Tech. 2021;84(5):1012–1021. doi:10.1002/jemt.23662
  37. Gonçalves FMC, Delbem ACB, Gomes LF, et al. Effect of fluoride, casein phosphopeptide-amorphous calcium phosphate and sodium trimetaphosphate combination treatment on the remineralization of caries lesions: An in vitro study. Arch Oral Biol. 2021;122:105001. doi:10.1016/j.archoralbio.2020.105001
  38. Weerkamp AH, Uyen HM, Busscher HJ. Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dent Res. 1988;67(12):1483–1487. doi:10.1177/00220345880670120801
  39. Afrasiabi S, Bahador A, Partoazar A. Combinatorial therapy of chitosan hydrogel-based zinc oxide nanocomposite attenuates the virulence of Streptococcus mutans. BMC Microbiol. 2021;21(1):62. doi:10.1186/s12866-021-02128-y
  40. Skucha-Nowak M, Gibas M, Tanasiewicz M, Twardawa H, Szklarski T. Natural and controlled demineralization for study purposes in minimally invasive dentistry. Adv Clin Exp Med. 2015;24(5):891–898. doi:10.17219/acem/28903
  41. Zhang J, Lynch RJM, Watson TF, Banerjee A. Chitosan-bioglass complexes promote subsurface remineralisation of incipient human carious enamel lesions. J Dent. 2019;84:67–75. doi:10.1016/j.jdent.2019.03.006
  42. Surija I, Gunawan HA, Amir LR. Effect of chitosan on the enamel demineralization process in vitro: An enamel solubility test. J Phys Conf Ser. 2018;1073:052005. doi:10.1088/1742-6596/1073/5/052005
  43. Lee HS, Tsai S, Kuo CC, et al. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci. 2012;385(1):235–243. doi:10.1016/j.jcis.2012.06.074
  44. Tiraferri A, Maroni P, Caro Rodríguez D, Borkovec M. Mechanism of chitosan adsorption on silica from aqueous solutions. Langmuir. 2014;30(17):4980–4988. doi:10.1021/la500680g
  45. Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater. 2013;9(7):7289–7297. doi:10.1016/j.actbio.2013.04.004
  46. Zhang X, Li Y, Sun X, et al. Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J Mater Sci Mater Med. 2014;25(12):2619–2628. doi:10.1007/s10856-014-5285-2
  47. Pichaiaukrit W, Thamrongananskul N, Siralertmukul K, Swasdison S. Fluoride varnish containing chitosan demonstrated sustained fluoride release. Dent Mater J. 2019;38(6):1036–1042. doi:10.4012/dmj.2018-112
  48. Lennon ÁM, Pfeffer M, Buchalla W, Becker K, Lennon S, Attin T. Effect of a casein/calcium phosphate-containing tooth cream and fluoride on enamel erosion in vitro. Caries Res. 2006;40(2):154–157. doi:10.1159/000091063
  49. Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphate-casein phospho peptide on enamel lesions: An in vitro comparative evaluation. J Conserv Dent. 2010;13(1):42–46. doi:10.4103/0972-0707.62634
  50. Wang Y, Hua F, Jiang H. CPP-ACP may be effective, but not significantly greater than using fluorides alone, in preventing and treating white spot lesions around orthodontic brackets. J Evid Based Dent Pract. 2020;20(1):101416. doi:10.1016/j.jebdp.2020.101416
  51. Bandekar S, Patil S, Dudulwar D, Moogi PP, Ghosh S, Kshirsagar S. Remineralization potential of fluoride, amorphous calcium phosphate-casein phosphopeptide, and combination of hydroxylapatite and fluoride on enamel lesions: An in vitro comparative evaluation. J Conserv Dent. 2019;22(3):305–309. doi:10.4103/jcd.jcd_13_19
  52. Tahmasbi S, Mousavi S, Behroozibakhsh M, Badiee M. Prevention of white spot lesions using three remineralizing agents: An in vitro comparative study. J Dent Res Dent Clin Dent Prospects. 2019;13(1):36–42. doi:10.15171/joddd.2019.006
  53. Batubara F, Abidin T, Agusnar H. The effect of adding chitosan nanoparticles to casein phosphopeptide amorphous calcium phosphate (Cpp-Acp) in tooth remineralization: A Sem study. Int J Sci Res. 2015;4(1):6–9.