Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2021) – 132.50
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI (2021) – 0.5
Average rejection rate (2022) – 79.69%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

2022, vol. 59, nr 4, October-December, p. 495–501

doi: 10.17219/dmp/146752

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Kış HC, Coşgunarslan A, Delikan E, Aksu S. Does childhood chemotherapy affect mandibular bone structures in a lifetime? Dent Med Probl. 2022;59(4):495–501. doi:10.17219/dmp/146752

Does childhood chemotherapy affect mandibular bone structures in a lifetime?

Hatice Cansu Kış1,A,C,D,F, Aykağan Coşgunarslan2,E, Ebru Delikan3,B,E, Seçkin Aksu4,F

1 Department of Orthodontics, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Turkey

2 Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Erciyes University, Kayseri, Turkey

3 Department of Pediatric Dentistry, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey

4 Department of Pediatric Dentistry, Faculty of Dentistry, Mersin University, Turkey

Abstract

Background. Chemotherapy, one of the most important treatment modalities for treating childhood cancers, is a major cause of bone loss in patients and survivors.
Objectives. This study aimed to evaluate mandibular bone structures in childhood cancer survivors (CCSs) by means of fractal dimension (FD) analysis and the Klemetti index (KI), and to compare them with regard to the control group.
Material and methods. In this retrospective study, the panoramic radiographs of 49 CCSs were included as the study group and the panoramic radiographs of 49 cancer-free volunteers were included as the control group. Based on the panoramic radiographs, FD and KI were determined.
Results. No significant differences were observed between the study and control groups in terms of mean FD values for regions of interest (ROIs) ROI_1, ROI_2 and ROI_3 (p = 0.750, p = 0.490 and p = 0.910, respectively). The mean FD values for ROI_1 for the study and control groups were 1.08 ±0.18 and 1.07 ±0.14, respectively. The mean FD values for ROI_2 for the study and control groups were 1.11 ±0.13 and 1.09 ±0.13, respectively. The mean FD values for ROI_3 for the study and control groups were 1.15 ±0.14 and 1.15 ±0.15, respectively. Statistically significant differences between the study and control groups were noted only in the distribution of the KI categories (p = 0.015).
Conclusions. Childhood chemotherapy may affect mandibular bone structures during a lifetime. The Klemetti index should be considered a useful clinical diagnostic tool for the examination of mandibular bone structures.

Key words

pediatric oncology, panoramic radiography, fractals, childhood chemotherapy

References (38)

  1. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–699. doi:10.1146/annurev.cellbio.22.010305.104154
  2. Downing JR, Wilson RK, Zhang J, et al. The Pediatric Cancer Genome Project. Nat Genet. 2012;44(6):619–622. doi:10.1038/ng.2287
  3. Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997;70:130–139. doi:10.1259/bjr.70.830.9135438
  4. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36(4):277–285. doi:10.1016/j.ctrv.2010.02.003
  5. Steliarova-Foucher E, Colombet M, Ries LA, et al. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet Oncol. 2017;18(6):719–731. doi:10.1016/S1470-2045(17)30186-9
  6. Weiser DA, Kaste SC, Siegel MJ, Adamson PC. Imaging in childhood cancer: A Society for Pediatric Radiology and Children’s Oncology Group Joint Task Force report. Pediatr Blood Cancer. 2013;60(8):1253–1260. doi:10.1002/pbc.24533
  7. Marcucci G, Beltrami G, Tamburini A, et al. Bone health in childhood cancer: Review of the literature and recommendations for the management of bone health in childhood cancer survivors. Ann Oncol. 2019;30(6):908–920. doi:10.1093/annonc/mdz120
  8. Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–1582. doi:10.1056/NEJMsa060185
  9. Dickerman JD. The late effects of childhood cancer therapy. Pediatrics. 2007;119(3):554–568. doi:10.1542/peds.2006-2826
  10. Wissing MD. Chemotherapy- and irradiation-induced bone loss in adults with solid tumors. Curr Osteoporos Rep. 2015;13(3):140–145. doi:10.1007/s11914-015-0266-z
  11. Pirker-Frühauf UM, Friesenbichler J, Urban EC, Obermayer-Pietsch B, Leithner A. Osteoporosis in children and young adults: A late effect after chemotherapy for bone sarcoma. Clin Orthop Relat Res. 2012;470(10):2874–2885. doi:10.1007/s11999-012-2448-7
  12. Rizzoli R, Body JJ, Brandi ML, et al. Cancer-associated bone disease. Osteoporos Int. 2013;24(12):2929–2953. doi:10.1007/s00198-013-2530-3
  13. Brown SA, Guise TA. Cancer-associated bone disease. Curr Osteoporos Rep. 2007;5(3):120–127. doi:10.1007/s11914-007-0027-8
  14. Seeman E, Delmas PD. Bone quality – the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–2261. doi:10.1056/NEJMra053077
  15. Renders GA, Mulder L, van Ruijven LJ, van Eijden TM. Porosity of human mandibular condylar bone. J Anat. 2007;210(3):239–248. doi:10.1111/j.1469-7580.2007.00693.x
  16. Sánchez I, Uzcátegui G. Fractals in dentistry. J Dent. 2011;39(4):273–292. doi:10.1016/j.jdent.2011.01.010
  17. Arsan B, Köse TE, Çene E, Özcan İ. Assessment of the trabecular structure of mandibular condyles in patients with temporomandibular disorders using fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(3):382–391. doi:10.1016/j.oooo.2016.11.005
  18. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88(5):628–635. doi:10.1016/s1079-2104(99)70097-1
  19. Alman AC, Johnson LR, Calverley DC, et al. Diagnostic capabilities of fractal dimension and mandibular cortical width to identify men and women with decreased bone mineral density. Osteoporos Int. 2012;23(5):1631–1636. doi:10.1007/s00198-011-1678-y
  20. Apolinário AC, Sindeaux R, de Souza Figueiredo PT, et al. Dental pano­ramic indices and fractal dimension measurements in osteogenesis imperfecta children under pamidronate treatment. Dentomaxillofac Radiol. 2016;45(4):20150400. doi:10.1259/dmfr.20150400
  21. Law AN, Bollen AM, Chen SK. Detecting osteoporosis using dental radiographs: A comparison of four methods. J Am Dent Assoc. 1996;127(12):1734–1742. doi:10.14219/jada.archive.1996.0134
  22. Klemetti E, Kolmakov S, Kröger H. Pantomography in assessment of the osteoporosis risk group. Scand J Dent Res. 1994;102(1):68–72. doi:10.1111/j.1600-0722.1994.tb01156.x
  23. Taguchi A, Suei Y, Ohtsuka M, Otani K, Tanimoto K, Ohtaki M. Usefulness of panoramic radiography in the diagnosis of postmenopausal osteoporosis in women. Width and morphology of inferior cortex of the mandible. Dentomaxillofac Radiol. 1996;25(5):263–267. doi:10.1259/dmfr.25.5.9161180
  24. Halling A, Persson GR, Berglund J, Johansson O, Renvert S. Comparison between the Klemetti index and heel DXA BMD measurements in the diagnosis of reduced skeletal bone mineral density in the elderly. Osteoporos Int. 2005;16(8):999–1003. doi:10.1007/s00198-004-1796-x
  25. Drozdzowska B, Pluskiewicz W, Tarnawska B. Panoramic-based mandibular indices in relation to mandibular bone mineral density and skeletal status assessed by dual energy X-ray absorptiometry and quantitative ultrasound. Dentomaxillofac Radiol. 2002;31(6):361–367. doi:10.1038/sj.dmfr.4600729
  26. Roebuck DJ. Skeletal complications in pediatric oncology patients. Radiographics. 1999;19(4):873–885. doi:10.1148/radiographics.19.4.g99jl01873
  27. Hu MI, Lu H, Gagel RF. Cancer therapies and bone health. Curr Rheumatol Rep. 2010;12(3):177–185. doi:10.1007/s11926-010-0098-x
  28. Chow EJ, Ness KK, Armstrong GT, et al. Current and coming challenges in the management of the survivorship population. Semin Oncol. 2020;47(1):23–39. doi:10.1053/j.seminoncol.2020.02.007
  29. Manelli F, Giustina A. Glucocorticoid-induced osteoporosis. Trends Endocrinol Metab. 2000;11(3):79–85. doi:10.1016/S1043-2760(00)00234-4
  30. Xiang X, Sowa MG, Iacopino AM, et al. An update on novel non‐invasive approaches for periodontal diagnosis. J Periodontol. 2010;81(2):186–198. doi:10.1902/jop.2009.090419
  31. Park CW, Hwang EH, Lee SR. Dento-maxillofacial abnormalities caused by radiotherapy and chemotherapy. Imaging Sci Dent. 2000;30(4):287–292. https://www.koreascience.or.kr/article/JAKO200016642201291.pdf. Accessed January 12, 2000.
  32. Yılmaz SG, Bayrakdar İŞ, Bayrak S, Yaşa Y. Late side effects of chemotherapy and radiotherapy in early childhood on the teeth: Two case reports. Turk J Hematol. 2018;35(1):87–88. doi:10.4274/tjh.2017.0216
  33. Alberth M, Kovalecz G, Nemes J, Máth J, Kiss C, Márton IJ. Oral health of long‐term childhood cancer survivors. Pediatr Blood Cancer. 2004;43(1):88–90. doi:10.1002/pbc.20023
  34. Kaste SC, Hopkins KP, Jenkins JJ 3rd. Abnormal odontogenesis in children treated with radiation and chemotherapy: Imaging findings. AJR Am J Roentgenol. 1994;162(6):1407–1411. doi:10.2214/ajr.162.6.8192008
  35. Dahllöf G, Rozell B, Forsberg CM, Borgström B. Histologic changes in dental morphology induced by high dose chemotherapy and total body irradiation. Oral Surg Oral Med Oral Pathol Oral Radiol. 1994;77(1):56–60. doi:10.1016/s0030-4220(06)80107-6
  36. Coşgunarslan A, Aşantoğrol F, Çabuk DS, Canger EM. The effect of selective serotonin reuptake inhibitors on the human mandible. Oral Radiol. 2021;37(1):20–28. doi:10.1007/s11282-019-00419-9
  37. Gupta B, Acharya A, Singh S, et al. Evaluation of jawbone morphology and bone density indices in panoramic radiographs of selective serotonin reuptake inhibitor users: A preliminary study. Dentomaxillofac Radiol. 2019;48(1):20170360. doi:10.1259/dmfr.20170360
  38. Allen B, Migliorati C, Rowland C, et al. Comparison of mandibular cortical thickness and QCT‐derived bone mineral density (BMD) in survivors of childhood acute lymphoblastic leukemia: A retrospective study. Int J Paediatr Dent. 2016;26(5):330–335. doi:10.1111/ipd.12203