Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.5
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

2020, vol. 57, nr 1, January-March, p. 95–102

doi: 10.17219/dmp/112861

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Current perspectives and the future of Candida albicans-associated denture stomatitis treatment

Stan obecny i perspektywy leczenia stomatopatii protetycznej związanej z zakażeniem Candida albicans

Mohammed Moustafa Gad1,A,B,C,D,F, Shaimaa Mohamed Fouda1,B,D,E

1 Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia


Denture stomatitis (DS) is a multifactorial disease, but the proliferation of Candida albicans (C. albicans) is the main causative factor. Different modalities have been suggested for the prevention and treatment of DS. Among the different approaches that have been implemented to inhibit and control DS there are the topical application of antifungal agents, the surface modification of the denture base and the incorporation of antimicrobial agents into the denture base material. Antifungal agents can effectively control DS, but the recurrence of the disease is common. Accordingly, it has been suggested that coating the surface of the acrylic denture base may result in a decreased fungal adhesion. In recent years, nanotechnology has dominated the research, and several nanoparticles have demonstrated antifungal effects. Therefore, the aim of this article was to review the antifungal effects of the different methods that have been suggested for the prevention and/or control of DS as well as the antimicrobial activity of denture base acrylic resin additives, including nanoparticles. Studies reporting the incorporation of antifungal/antimicrobial agents into the polymethyl methacrylate (PMMA) denture base were included in this review. The PubMed, Web of Science, Google Scholar, and Scopus databases were searched for the articles published between January 2000 and December 2018 using the following key words: dental prosthesis, denture stomatitis, candidiasis, antifungal agents, biofilm formation, polymethyl methacrylate, and PMMA. The antimicrobial material incorporated into the resin may have a superior effect in preventing DS over simply coating the surface of the denture base. However, some antimicrobial fillers can have adverse effects on the physical and mechanical properties of the denture base resin.

Key words

polymethyl methacrylate, denture stomatitis, candidiasis, antifungal agents, dental prosthesis

Słowa kluczowe

polimetakrylan metylu, stomatopatia protetyczna, kandydoza, czynniki przeciwgrzybicze, proteza dentystyczna

References (61)

  1. Gendreau L, Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont. 2011;20(4):251–260.
  2. Newton AV. Denture sore mouth. A possible etiology. Br Dent J. 1962;112:357–360.
  3. Silva Pinto TM, Claro Neves AC, Pereira Leão MV, Cardoso Jorge AO. Vinegar as an antimicrobial agent for control of Candida spp. in complete denture wearers. J Appl Oral Sci. 2008;16(6):385–390.
  4. Taweechaisupapong S, Klanrit P, Singhara S, Pitiphat W, Wongkham S. Inhibitory effect of Streblus asper leaf-extract on adhesion of Candida albicans to denture acrylic. J Ethnopharmacol. 2006;106(3):414–417.
  5. Pires de Carvalho Bianchi CM, Bianchi HA, Tadano T, et al. Factors related to oral candidiasis in elderly users and non-users of removable dental prostheses. Rev Inst Med Trop Sao Paulo. 2016;58:17.
  6. Bakhshi M, Taheri JB, Shabestari SB, Tanik A, Pahlevan R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology. 2012;29(2):e680–e684.
  7. Gebremedhin S, Dorocka-Bobkowska B, Prylinski M, Konopka K, Duzgunes N. Miconazole activity against Candida biofilms deve­loped on acrylic discs. J Physiol Pharmacol. 2014;65(4):593–600.
  8. Davies A, Gebremedhin S, Yee M, et al. Cationic porphyrin-mediated photodynamic inactivation of Candida biofilms and the effect of miconazole. J Physiol Pharmacol. 2016;67(5):777–783.
  9. Tsutsumi C, Takakuda K, Wakabayashi N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J Dent. 2016;44:37–43.
  10. Martins KV, de Lacerda Gontijo SL. Treatment of denture stomatitis: Literature review. Rev Bras Odontol. 2017;74(3):215–220.
  11. Alavarce RAS, Saldanha LL, Almeida NLM, Porto VC, Dokkedal AL, Lara VS. The beneficial effect of Equisetum giganteum L. against Candida biofilm formation: New approaches to denture stomatitis. Evid Based Complement Alternat Med. 2015;2015:939625.
  12. Marcos-Arias C, Eraso E, Madariaga L, Quindós G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern Med. 2011;11:119.
  13. Pinelli LAP, Montandon AAB, Corbi SCT, Moraes TA, Fais LMG. Ricinus communis treatment of denture stomatitis in institutionalised elderly. J Oral Rehabil. 2013;40(5):375–380.
  14. de MS Pinta G, Lia EN, Berretta AA, et al. Efficacy of propolis on the denture stomatitis treatment in older adults: A multicentric randomized trial. Evid Based Complement Alternat Med. 2017;2017:8971746.
  15. Al-Dwairi ZN, Al-Quran FA, Al-Omari OY. The effect of antifungal agents on surface properties of poly(methyl methacrylate) and its relation to adherence of Candida albicans. J Prosthodont Res. 2012;56(4):272–280.
  16. Shirley KP, Windsor LJ, Eckert GJ, Gregory RL. In vitro effects of Plantago major extract, aucubin, and baicalein on Candida albicans biofilm formation, metabolic activity, and cell surface hydrophobicity. J Prosthodont. 2017;26(6):508–515.
  17. Machado-Gonçalves L, Tavares-Santos A, Santos-Costa F, et al. Effects of Terminalia catappa Linn. extract on Candida albicans biofilms developed on denture acrylic resin disc. J Clin Exp Dent. 2018;10(7):e642–e647.
  18. Madeira PLB, Carvalho LT, Paschoal MAB, et al. In vitro effects of lemongrass extract on Candida albicans biofilms, human cells viability, and denture surface. Front Cell Infect Microbiol. 2016;6:71.
  19. da Silva FC, Kimpara ET, Gasparotto Mancini MN, Balducci I, Cardoso Jorge AO, Koga-Ito CY. Effectiveness of six different disinfectants on removing five microbial species and effects on the topographic characteristics of acrylic resin. J Prosthodont. 2008;17(8):627–633.
  20. Gornitsky M, Paradisl I, Landaverde G, Malo AM, Velly AM. A clini­cal and microbiological evaluation of denture cleansers for geriatric patients in long-term care institutions. J Can Dent Assoc. 2002;68(1):39–45.
  21. Barnabé W, de Mendonça NT, Pimenta FC, Pegoraro LF, Scolaro JM. Efficacy of sodium hypochlorite and coconut soap used as disinfecting agents in the reduction of denture stomatitis, Streptococcus mutans and Candida albicans. J Oral Rehabil. 2004;31(5):453–459.
  22. Cervantes Garcia de Sousa FA, Paradella TC, Koga-Ito CY, Cardoso Jorge AO. Effect of sodium bicarbonate on Candida albicans adherence to thermally activated acrylic resin. Braz Oral Res. 2009;23(4):381–385.
  23. Ellepola AN, Samaranayake LP. Adjunctive use of chlorhexidine in oral candidoses: A review. Oral Dis. 2001;7(1):11–17.
  24. Al-Thobity AM, Gad M, ArRejaie A, Alnassar T, Al-Khalifa KS. Impact of denture cleansing solution immersion on some properties of different denture base materials: An in vitro study. J Prosthodont. 2019;28(8):913–919.
  25. Porwal A, Khandelwal M, Punia V, Sharma V. Effect of denture clean­sers on color stability, surface roughness, and hardness of different denture base resins. J Indian Prosthodont Soc. 2017;17(1):61–67.
  26. Petrović M, Kostić M, Kostić M, et al. Therapeutic alternatives of natu­ral compounds in treatment of Candida-associated denture stomatitis. Acta Med Median. 2014;53(1):73–80.
  27. Waltimo T, Vallittu P, Haapasalo M. Adherence of Candida species to newly polymerized and water-stored denture base polymers. Int J Prosthodont. 2001;14(5):457–460.
  28. Zamperini CA, Machado AL, Vergani CE, Pavarina AC, Giampaolo ET, da Cruz NC. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle. Arch Oral Biol. 2010;55(10):763–770.
  29. Ali AA, Alharbi FA, Suresh CS. Effectiveness of coating acrylic resin dentures on preventing Candida adhesion. J Prosthodont. 2013;22(6):445–450.
  30. Yodmongkol S, Chantarachindawong R, Thaweboon S, Thaweboon B, Amornsakchai T, Srikhirin T. The effects of silane-SiO2 nanocompo­site films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material. J Prosthet Dent. 2014;112(6):1530–1538.
  31. Lazarin AA, Zamperini CA, Vergani CE, Wady AF, Giampaolo ET, Machado AL. Candida albicans adherence to an acrylic resin modified by experimental photopolymerised coatings: An in vitro study. Gerodontology. 2014;31(1):25–33.
  32. Lazarin AA, Machado AL, Zamperini CA, Wady AF, Palomari Spolidorio DM, Vergani CE. Effect of experimental photopoly­merized coatings on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Arch Oral Biol. 2013;58(1):1–9.
  33. Moura JS, da Silva WJ, Pereira T, Del Bel Cury AA, Rodrigues Garcia RC. Influence of acrylic resin polymerization methods and saliva on the adherence of four Candida species. J Prosthet Dent. 2006;96(3):205–211.
  34. Hirasawa M, Tsutsumi-Arai C, Takakusaki K, Oya T, Fueki K, Wakabayashi N. Superhydrophilic co-polymer coatings on denture surfaces reduce Candida albicans adhesion – an in vitro study. Arch Oral Biol. 2018;87:143–150.
  35. Zhou L, Tong Z, Wu G, et al. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch Oral Biol. 2010;55(6):401–409.
  36. Park SE, Blissett R, Susarla SM, Weber HP. Candida albicans adhe­rence to surface-modified denture resin surfaces. J Prosthodont. 2008;17(5):365–369.
  37. Azuma A, Akiba N, Minakuchi S. Hydrophilic surface modification of acrylic denture base material by silica coating and its influence on Candida albicans adherence. J Med Dent Sci. 2012;59(1):1–7.
  38. Yoshijima Y, Murakami K, Kayama S, et al. Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses. 2010;53(3):221–226.
  39. Tsuji M, Ueda T, Sawaki K, Kawaguchi M, Sakurai K. Biocompatibi­lity of a titanium dioxide-coating method for denture base acrylic resin. Gerodontology. 2016;33(4):539–544.
  40. Arai T, Ueda T, Sugiyama T, Sakurai K. Inhibiting microbial adhesion to denture base acrylic resin by titanium dioxide coating. J Oral Rehabil. 2009;36(12):902–908.
  41. Sawada T, Sawada T, Kumasaka T, et al. Self-cleaning effects of acrylic resin containing fluoridated apatite-coated titanium dioxide. Gerodontology. 2014;31(1):68–75.
  42. Al-Bakri IA, Harty D, Al-Omari WM, Swain MV, Chrzanowski W, Ellakwa A. Surface characteristics and microbial adherence ability of modified polymethylmethacrylate by fluoridated glass fillers. Aust Dent J. 2014;59(4):482–489.
  43. Kamijo K, Mukai Y, Tominaga T, et al. Fluoride release and recharge characteristics of denture base resins containing surface pre-reacted glass-ionomer filler. Dent Mater J. 2009;28(2):227–233.
  44. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing – the future in dental care for elderly edentulous patients? J Dent. 2017;59:68–77.
  45. Gupta L, Aparna IN, Bhat S, Ginjupalli K. Effect of comonomer of methacrylic acid on flexural strength and adhesion of Staphylococcus aureus to heat polymerized poly(methyl methacrylate) resin: An in vitro study. J Indian Prosthodont Soc. 2017;17(2):149–155.
  46. Marra J, Paleari AG, Rodriguez LS, Perin Leite AR, Pero AC, Compagnoni MA. Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation. J Appl Oral Sci. 2012;20(6):643–648.
  47. Compagnoni MA, Pero AC, Ramos SMM, Marra J, Paleari AG, Rodriguez LS. Antimicrobial activity and surface properties of an acrylic resin containing a biocide polymer. Gerodontology. 2014;31(3):220–226.
  48. Nawasrah A, AlNimr A, Ali AA. Antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. Int J Environ Res Public Health. 2016;13(5):520.
  49. Al-Thobity AM, Al-Khalifa KS, Gad MM, Al-Hariri M, Ali AA, Alnassar T. In vitro evaluation of the inhibitory activity of thymoquinone in combatting Candida albicans in denture stomatitis prevention. Int J Environ Res Public Health. 2017;14(7):743.
  50. Sivakumar I, Arunachalam KS, Sajjan S, Ramaraju AV, Rao B, Kamaraj B. Incorporation of antimicrobial macromolecules in acrylic denture base resins: A research composition and update. J Prosthodont. 2014;23(4):284–290.
  51. Anwander M, Rosentritt M, Schneider-Feyrer S, Hahnel S. Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles. J Adv Prosthodont. 2017;9(6):482–485.
  52. Li Z, Sun J, Lan J, Qi Q. Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans biofilm formation. Gerodontology. 2016;33(2):209–216.
  53. Nam KY, Lee CH, Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology. 2012;29(2):e413–e419.
  54. Suganya S, Ahila SC, Kumar BM, Kumar MV. Evaluation and comparison of anti-Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: An in vitro study. Indian J Dent Res. 2014;25(2):204–207.
  55. Srivastava R, Sharma V, Dave A, Upadhyay M. Silver nanoparticles in denture base material. Int J Prev Clin Dent Res. 2016;3(4):267–270.
  56. Casemiro LA, Gomes Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite – part I. Gerodontology. 2008;25(3):187–194.
  57. Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Ruvolo Filho AC, Barbosa DB. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont. 2012;21(1):7–15.
  58. Wady AF, Machado AL, Zucolotto V, Zamperini CA, Berni E, Vergani CE. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol. 2012;112(6):1163–1172.
  59. Su W, Wang S, Wang X, Fu X, Weng J. Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial proper­ties. Surf Coat Techn. 2010;205(2):465–469.
  60. Kamonkhantikul K, Arksornnukit M, Takahashi H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int J Nanomedicine. 2017;12:2353-2360.
  61. Gad MM, Abualsaud R. Behavior of PMMA denture base materials containing titanium dioxide nanoparticles: A literature review. Int J Biomater. 2019;2019:6190610.