Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.5
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2019, vol. 56, nr 3, July-September, p. 285–290

doi: 10.17219/dmp/109550

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Comparison of the radiopacity of selected materials used for vital pulp therapy: An in vitro assessment

Porównanie pochłaniania promieni rentgenowskich przez wybrane materiały stosowane w leczeniu biologicznym miazgi – ocena in vitro

Elżbieta Łuczaj-Cepowicz1,A,B,C,D,E, Grażyna Marczuk-Kolada1,A,B,C,D,E, Małgorzata Pawińska2,D,E, Janusz Różycki3,B,C, Ewa Chorzewska1,E

1 Department of Pedodontics, Medical University of Bialystok, Poland

2 Department of Integrated Dentistry, Medical University of Bialystok, Poland

3 Department of Radiology, Medical University of Bialystok, Poland

Abstract

Background. An assessment of the therapeutic effects of vital pulp treatment is based on both clinical and radiological evaluation.
Objectives. The aim of the research was a long-term (after 1, 2, 4, 6, and 8 weeks) radiological assessment of X-ray absorption by 8 selected materials used for the vital treatment of dental pulp.
Material and Methods. The materials, prepared in accordance with the manufacturers’ recommendations, were placed in molds measuring 10 mm in diameter and 2 mm in thickness. The molds with the samples were placed on an occlusal film with an aluminum step wedge, and then X-rayed using an intraoral X-ray unit. After processing, an X-ray image with varying degrees of opacity was obtained. The radiological density of the samples, the step wedge and the background was measured 6 times using a densitometer. The tests were repeated at the following intervals: after 7 days, and after 2, 4, 6, and 8 weeks. The molds with the material samples were stored in an incubator at 37°C and 95% humidity.
Results. The obtained results were statistically analyzed. The mineral trioxide aggregate (MTA) materials exhibited the highest degree of contrast, whereas the lowest radiopacity was shown for the non-setting calcium hydroxide preparations (p < 0.0001). Calcium hydroxide cements presented medium radiopacity values.
Conclusion. The radiopacity of all the evaluated materials showed a statistically insignificant increasing tendency with regard to the duration of the experiment. All the tested preparations showed acceptable radiopacity, enabling radiological detection in the course of vital pulp therapy.

Key words

mineral trioxide aggregate, densitometry, calcium hydroxide, X-ray absorption, vital dental pulp therapy

Słowa kluczowe

agregat trójtlenków mineralnych, densytometria, wodorotlenek wapnia, pochłanianie promieni rentgenowskich, leczenie biologiczne miazgi zębów

References (30)

  1. Nosrat A, Seifi A, Asgary S. Pulpotomy in caries-exposed immature permanent molars using calcium-enriched mixture cement or mine­ral trioxide aggregate: A randomized clinical trial. Int J Paediatr Dent. 2013;23(1):56–63.
  2. Witherspoon DE. Vital pulp therapy with new materials: New direct­ions and treatment perspectives – permanent teeth. J Endod. 2008;34(7 Suppl):S25–S28.
  3. Paranjpe A, Zhang H, Johnson JD. Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. J Endod. 2010;36(6):1042–1047.
  4. Nair PN, Duncan HF, Pitt Ford TR, Luder HU. Histological, ultrastruct­ural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: A randomized controlled trial. Int Endod J. 2008;41(2):128–150.
  5. Swift EJ Jr., Trope M, Ritter AV. Vital pulp therapy for the mature tooth – can it work? Endod Topics. 2003;5(1):49–56.
  6. Cianconi L, Palopoli P, Campanella V, Mancini M. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation. Eur J Paediatr Dent. 2016;17(4):281–285.
  7. Ferracane JL, Cooper PR, Smith AJ. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? Odontol. 2010;98(1):2–14.
  8. Olsson H, Petersson K, Rohlin M. Formation of a hard tissue barrier after pulp cappings in humans. A systematic review. Int Endod J. 2006;39(6):429–442.
  9. Parolia A, Kundabala M, Rao NN, et al. A comparative histological analysis of human pulp following direct pulp capping with Propolis, mineral trioxide aggregate and Dycal. Aust Dent J. 2010;55(1):59–64.
  10. Camilleri J, Gandolfi MG. Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers. Int Endod J. 2010;43(1):21–30.
  11. Dionysopoulos D, Tolidis K, Gerasimou P, Koliniotou-Koumpia E. Effects of shade and composition on radiopacity of dental composite restorative materials. Oral Radiol. 2017;33(3):178–186.
  12. Watts DC, McCabe JF. Aluminium radiopacity standards for denti­stry: An international survey. J Dent.1999;27(1):73–78.
  13. Baksi BG, Ermis RB. Comparison of conventional and digital radio­graphy for radiometric differentiation of dental cements. Quintessence Int. 2007;38(9):e532–e536.
  14. Souza LC, Yadlapati M, Dorn SO, Silva R, Letra A. Analysis of radio­pacity, pH and cytotoxicity of a new bioceramic material. J Appl Oral Sci. 2015;23(4):383–389.
  15. Devito KL, Ortega AI, Haiter-Neto F. Radiopacity of calcium hydroxide cement compared with human tooth structure. J Appl Oral Sci. 2004;12(4):290–293.
  16. Antonijevic D, Jevremovic D, Jovanovic S, Obradovic-Djuricic K. An in vitro radiographic analysis of the density of dental luting cements as measured by CCD-based digital radiography. Quintessence Int. 2012;43(5):421–428.
  17. Medgovic IM, Antonijevic D. In vitro radiographic density of dental posts measured by digital radiography. Oral Radiol. 2014;30(1):9–12.
  18. Pires de Souza FC, Pardini LC, Cruvinel DR, Hamida HM, Garcia LF. In vitro comparison of the radiopacity of cavity lining materials with human dental structures. J Conserv Dent. 2010;13(1):65–70.
  19. Bueno CE, Zeferino EG, Manhães LR Jr., Rocha DG, Cunha RS, De Martin AS. Study of the bismuth oxide concentration required to provide Portland cement with adequate radiopacity for endodontic use. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(1):e65–e69.
  20. Tanalp J, Karapınar-Kazandağ M, Dölekoğlu S, Kayahan MB. Comparison of the radiopacities of different root-end filling and repair materials. ScientificWorldJournal. 2013;2013:594950.
  21. Tanomaru-Filho M, Jorge EG, Tanomaru JMG, Gonçalves M. Evaluation of the radiopacity of calcium hydroxide- and glass-ionomer-based root canal sealers. Int Endod J. 2008;41(1):50–53.
  22. Dammaschke T, Stratmann U, Wolff P, Sagheri D, Schäfer E. Direct pulp capping with mineral trioxide aggregate: An immunohistologic comparison with calcium hydroxide in rodents. J Endod. 2010;36(5):814–819.
  23. Cutajar A, Mallia B, Abela S, Camillleri J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent Mater. 2011;27(9):879–891.
  24. Laghios CD, Benson BW, Gutmann JL, Cutler CW. Comparative radio­pacity of tetracalcium phosphate and other root-end filling materials. Int Endod J. 2000;33(4):311–315.
  25. Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Portand cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(1):e54–e57.
  26. Ordinola-Zapata R, Bramante CM, García-Godoy F, et al. The effect of radiopacifiers agents on pH, calcium release, radiopacity, and antimicrobial properties of different calcium hydroxide dressings. Microsc Res Tech. 2015;78(7):620–625.
  27. Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and portland cement. J Endod. 2006;32(3):193–197.
  28. Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005;31(9):665–668.
  29. Danesh G, Dammaschke T, Gerth HU, Zandbiglari T, Schäfer E. A comparative study of selected properties of ProRoot mine­ral trioxide aggregate and two Portland cements. Int Endod J. 2006;39(3):213–219.
  30. Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review – part I: Chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16–27.