Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.5
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2019, vol. 56, nr 1, January-March, p. 27–32

doi: 10.17219/dmp/102710

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Finite element analysis of stress distribution around a dental implant with different amounts of bone loss: An in vitro study

Analiza metodą elementów skończonych rozkładu naprężeń dookoła implantu zębowego ze zróżnicowaną utratą kości – badanie in vitro

Mohammad Jafarian1,2,3,A,D,E,F, Fatemeh Sadat Mirhashemi4,B,C,F, Naghmeh Emadi2,5,D,E,F

1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Dentofacial Deformities Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran

5 Dental Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background. The choice between reducing the bone height and inserting a shorter implant with a greater diameter or a longer and narrower implant without altering the bone height is a challenge in clinical practice.
Objectives. The purpose of this finite element analysis (FEA) was to compare the pattern and level of stress around implants with different lengths and diameters and with different amounts of bone loss, which changes the implant–crown ratio over time, depending on the available bone and the treatment modality.
Material and Methods. The FEA was carried out to evaluate the stress distribution in bone around 3.25 × 13 mm and 4 × 11 mm 3i implants, and 3.3 × 12 mm and 4.1 × 10 mm Straumann® implants. A 3D segment of the mandible was reconstructed from a computed tomography image of the posterior mandible. Occlusal force was simulated by applying 200 N vertical and 40 N horizontal loads to the occlusal node at the center of the abutment. The pattern of stress distribution in bone was evaluated in 10 models for each implant, representing 0–9 mm of bone resorption.
Results. The results showed that along with decreasing the implant insertion depth, and consequently the implant–crown ratio, the amount of stress in bone increased. The amount of stress increased with an increase in depth of bone loss in all models, but there was no significant change in the amount of stress in the first several millimeters of bone loss.
Conclusion. The results suggest that in terms of stress distribution, it is better to reduce the bone height and insert shorter implants with a greater diameter than longer implants with a smaller diameter.

Key words

dental implant, finite element analysis, alveolar bone loss

Słowa kluczowe

implant zębowy, analiza metodą elementów skończonych, utrata kości wyrostka zębodołowego

References (30)

  1. Mumcu E, Bilhan H, Cekici A. Marginal bone loss around implants supporting fixed restorations. J Oral Implantol. 2011;37(5):549–558.
  2. Cox JF, Zarb GA. The longitudinal clinical efficacy of osseointegrated dental implants: A 3-year report. Int J Oral Maxillofac Implants. 1987;2(2):91–100.
  3. Kim YT, Lim GH, Lee JH, Jeong SN. Marginal bone level changes in association with different vertical implant positions: A 3-year retrospective study. J Periodontal Implant Sci. 2017;47(4):231–239.
  4. Peixoto CD, Almas K. The implant surface characteristics and peri-implantitis. An evidence-based update. Odontostomatol Trop. 2016;39(153):23–35.
  5. Caglar A, Bal BT, Aydin C, Yilmaz H, Ozkan S. Evaluation of stresses occurring on three different zirconia dental implants: Three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2010;25(1):95–103.
  6. Ueda N, Takayama Y, Yokoyama A. Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. J Prosthodont Res. 2017;61(3):324–332.
  7. Vairo G, Sannino G. Comparative evaluation of osseointegrated dental implants based on platform-switching concept: Influence of diameter, length, thread shape, and in-bone positioning depth on stress-based performance. Comput Math Methods Med. 2013;2013:250929.
  8. Guan H, van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: A finite element study. Int J Oral Maxillofac Implants. 2009;24(5):866–876.
  9. Javed F, Romanos GE. Role of implant diameter on long-term survival of dental implants placed in posterior maxilla: A systematic review. Clin Oral Investig. 2015;19(1):1–10.
  10. Sugiura T, Yamamoto K, Kawakami M, Horita S, Murakami K, Kirita T. Influence of bone parameters on peri-implant bone strain distribution in the posterior mandible. Med Oral Patol Oral Cir Bucal. 2015;20(1):e66–e73.
  11. Cruz M, Wassall T, Toledo EM, da Silva Barra LP, Cruz S. Finite element stress analysis of dental prostheses supported by straight and angled implants. Int J Oral Maxillofac Implants. 2009;24(3):391–403.
  12. Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G. Tooth–implant connection: Some biomechanical aspects based on finite element analyses. Clin Oral Implants Res. 2002;13(3):334–341.
  13. Petrie CS, Williams JL. Comparative evaluation of implant designs: Influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res. 2005;16(4):486–494.
  14. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35.
  15. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant – a three‐dimensional finite element analysis. J Oral Rehabil. 2005;32(4):279–286.
  16. Qian L, Todo M, Matsushita Y, Koyano K. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: Finite element analysis. Int J Oral Maxillofac Implants. 2009;24(5):877–886.
  17. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J. 2005;24(2):219–224.
  18. Cervino G, Romeo U, Lauritano F, et al. Fem and von Mises analysis of OSSTEM® dental implant structural components: Evaluation of different direction dynamic loads. Open Dent J. 2018;12:219–229.
  19. Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length and diameter on stress distribution: A finite element analysis. J Prosthet Dent. 2004;91(1):20–25.
  20. Kong L, Sun Y, Hu K, et al. Bivariate evaluation of cylinder implant diameter and length: A three‐dimensional finite element analysis. J Prosthodont. 2008;17(4):286–293.
  21. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J Prosthet Dent. 2008;100(6):422–431.
  22. Ding X, Liao SH, Zhu XH, Zhang XH, Zhang L. Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants. Clin Implant Dent Relat Res. 2009;11(4):279–287.
  23. Lee CT, Chen YW, Starr JR, Chuang SK. Survival analysis of wide dental implant: Systematic review and meta‐analysis. Clin Oral Implants Res. 2016;27(10):1251–1264.
  24. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: A quantitative approach. Int J Oral Maxillofac Implants. 2008;24(1):88–95.
  25. Grandi T, Svezia L, Grandi G. Narrow implants (2.75 and 3.25 mm diameter) supporting a fixed splinted prostheses in posterior regions of mandible: One-year results from a prospective cohort study. Int J Implant Dent. 2017;3:43.
  26. Zweers J, van Doornik A, Hogendorf EA, Quirynen M, Van der Weijden GA. Clinical and radiographic evaluation of narrow‐ vs. regular‐diameter dental implants: A 3‐year follow‐up. A retrospective study. Clin Oral Implants Res. 2015;26(2):149–156.
  27. Albrektsson T, Gottlow J, Meirelles L, Ostman PO, Rocci A, Sennerby L. Survival of NobelDirect implants: An analysis of 550 consecutively placed implants at 18 different clinical centers. Clin Implant Dent Relat Res. 2007;9(2):65–70.
  28. Galindo-Moreno P, Nilsson P, King P, et al. Clinical and radiographic evaluation of early loaded narrow-diameter implants: 5-year follow-up of a multicenter prospective clinical study. Clin Oral Implants Res. 2017;28(12):1584–1591.
  29. Ohyama T, Yasuda H, Shibuya N, et al. Three-dimensional finite element analysis of the effects of implant diameter and photofunctionalization on peri-implant stress. J Oral Sci. 2017;59(2):273–278.
  30. Yoon KH, Kim SG, Lee JH, Suh SW. 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss. Implant Dent. 2011;20(5):354–359.