Dental and Medical Problems

Dent. Med. Probl.
Index Copernicus (ICV 2019) – 118.76
MNiSW – 20
CiteScore (2020) – 1.2
Average rejection rate (2020) – 88.71%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2018, vol. 55, nr 2, April-June, p. 197–206

doi: 10.17219/dmp/90989

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Methods of accelerating orthodontic tooth movement: A review of contemporary literature

Metody przyspieszania ortodontycznego przesuwania zębów – przegląd współczesnego piśmiennictwa

Alicja Kacprzak1,A,B,C,D,F, Adrian Strzecki2,A,B,C,D,E,F

1 Students’ Scientific Association of Orthodontics, Medical University of Lodz, Poland

2 Department of Orthodontics, Medical University of Lodz, Poland

Abstract

Technological progress and the introduction of modern therapeutic methods are constantly changing contemporary orthodontics. More and more orthodontic patients are working adults, who expect satisfactory therapeutic effects as soon as possible, increasing the importance of methods accelerating tooth movement. The aim of this study was to review the current literature regarding methods of accelerating tooth movement and reducing the duration of the active phase of therapy. The literature was collected from the PubMed and EBSCO databases using “accelerated orthodontic tooth movement” as the search key words. The methods described were categorized as conservative and surgical. The pharmacological agents used in conservative treatment, such as growth hormone, parathyroid hormone, thyroxine, and vitamin D, are especially worth mentioning. They stimulate osteoclasts to increase resorption through a variety of mechanisms. Effective methods also include physical stimuli, e.g., vibrations or photobiomodulation. Most studies describing the effects of pharmacological agents were based on animal subjects and they may therefore lack clinical relevancy. Corticotomy and its modifications based on the regional acceleratory phenomenon (RAP) might prove to be a useful augmentation of orthodontic treatment, especially in adults, including patients with periodontal disease.

Key words

orthodontics, corticotomy, accelerated tooth movement

Słowa kluczowe

ortodoncja, kortykotomia, przyspieszone przesuwanie zębów

References (116)

  1. Tsichlaki A, Chin SY, Pandis N, Fleming PS. How long does treatment with fixed orthodontic appliances last? A systematic review. Am J Orthod Dentofacial Orthop. 2016;149:308–318.
  2. Szymańska-Kubal D. Selected complications of orthodontic treatment with fixed and removable appliances [in Polish]. Nowa Stomatol. 1999;4:1–2:31–40.
  3. Proffit WR, Fields HW, Sarver DM. The biologic basis of orthodontic therapy. In: Komorowska A, ed. Contemporary Orthodontics [in Polish]. Wrocław, Poland: Elsevier Urban&Partner; 2016;2:7–9.
  4. Konopka T. Etiopathogenesis of periodontal diseases. In: Górska R, Konopka T, eds. Contemporary Periodontology [in Polish]. Otwock, Poland: Med Tour Press International; 2013:94–95.
  5. Marcus R. Skeletal effects of growth hormone and IGF-I in adults. Horm Res. 1997;48(Suppl 5):60–64.
  6. Ribeiro JS, Maciel JV, Knop LA, Machado MÂ, Grégio AM, Camargo ES. Effect of growth hormone in experimental tooth movement. Braz Dent J. 2013;24:503–507.
  7. Simpson H, Savine R, Sönksen P, et al.; GRS Council. Growth hormone replacement therapy for adults: Into the new millennium. Growth Horm IGF Res. 2002;12:1–33.
  8. Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinol. 1995;136:3632–3638.
  9. Esbrit P, Alcaraz MJ. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem Pharmacol. 2013;85:1417–1423.
  10. Soma S, Matsumoto S, Higuchi Y, et al. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000;79:1717–1724.
  11. Li F, Li G, Hu H, Liu R, Chen J, Zou S. Effect of parathyroid hormone on experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2013;144:523–532.
  12. Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res. 1999;14:546–554.
  13. Diravidamani K, Sivalingam SK, Agarwal V. Drugs influencing orthodontic tooth movement: An overall review. J Pharm Bioallied Sci. 2012;4(Suppl 2):299–303.
  14. Kouskoura T, Katsaros C, von Gunten S. The potential use of pharmacological agents to modulate orthodontic tooth movement (OTM). Front Physiol. 2017;8:67.
  15. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med. 1989;320:980–991.
  16. Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1988;94:278–284.
  17. Wood DC, Wood J. Pharmacologic and biochemical considerations of dimethyl sulfoxide. Ann NY Acad Sci. 1975;243:7–19.
  18. Takano-Yamamoto T, Kawakami M, Kobayashi Y, Yamashiro T, Sakuda M. The effect of local application of 1,25-dihydroxycholecalciferol on osteoclast numbers in orthodontically treated rats. J Dent Res. 1992;71:53–59.
  19. Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004;22:541–546.
  20. Kale S, Kocadereli I, Atilla P, Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125:607–614.
  21. Blanco JF, Diaz R, Gross H, Rodríguez N, Hernandez LR. Efecto de la administración sistémica del 1,25 Dihidrxicolecalciferol sobre la velocidad del movimiento ortodóncico en humanos. Estudio Clínico Revista Odontos. 2001;8:13–21.
  22. Seifi M, Hamedi R, Khavandegar Z. The effect of thyroid hormone, prostaglandin E2, and calcium gluconate on orthodontic tooth movement and root resorption in rats. J Dent (Shiraz). 2015;16(Suppl 1):35–42.
  23. Shirazi M, Dehpour AR, Jafari F. The effect of thyroid hormone on orthodontic tooth movement in rats. J Clin Pediatr Dent. 1999;23:259–264.
  24. Verna C, Dalstra M, Melsen B. The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod. 2000;22:343–352.
  25. Deguchi T, Yabuuchi T, Ando R, Ichikawa H, Sugimoto T, Takano-Yamamoto T. Increase of galanin in trigeminal ganglion during tooth movement. J Dent Res. 2006;85:658–663.
  26. Yamashiro T, Fujiyama K, Fujiyoshi Y, Inaguma N, Takano-Yamamoto T. Inferior alveolar nerve transection inhibits increase in osteoclast appearance during experimental tooth movement. Bone. 2000;26:663–669.
  27. Dupin E, Sommer L. Neural crest progenitors and stem cells: From early development to adulthood. Dev Biol. 2012;366:83–95.
  28. Takeuchi T, Tsuboi T, Arai M, Togari A. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol. 2001;61:579–586.
  29. Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–317.
  30. Kondo M, Kondo H, Miyazawa K, Goto S, Togari A. Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling. Bone. 2013;52:39–47.
  31. Cao H, Kou X, Yang R, et al. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. J Dent Res. 2014;93:1163–1169.
  32. Stark TM, Sinclair PM. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1987;91:91–104.
  33. Kotani H, Kawaguchi H, Shimoaka T, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res. 2002;17:1814–1821.
  34. Yan QC, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs. Med Eng Phys. 1998;20:397–402.
  35. Kawata T, Hirota K, Sumitani K, et al. A new orthodontic force system of magnetic brackets. Am J Orthod Dentofacial Orthop. 1987;92:241–248.
  36. Hwang HS, Lee KH. Intrusion of overerupted molars by corticotomy and magnets. Am J Orthod Dentofacial Orthop. 2001;120:209–216.
  37. Oki M, Yamamoto Y, Yasunaga T, Shiina R, Kawano S, Nakasima A. A treatment method for bringing an impacted tooth into the dental arch using fine magnets: Measurements of traction force using NdFeB magnets. Nihon Kyosei Shika Gakkai Zasshi. 2001;60:104–111.
  38. Vardimon AD, Graber TM, Voss LR. Stability of magnetic versus mechanical palatal expansion. Eur J Orthod. 1989;11:107–115.
  39. Sakata M, Yamamoto Y, Imamura N, Nakata S, Nakasima A. The effects of a static magnetic field on orthodontic tooth movement. J Orthod. 2008;35:249–254.
  40. Tengku BS, Joseph BK, Harbrow D, Taverne AA, Symons AL. Effect of a static magnetic field on orthodontic tooth movement in the rat. Eur J Orthod. 2000;22:475–487.
  41. De Mattei M, Caruso A, Traina GC, Pezzetti F, Baroni T, Sollazzo V. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnet. 1999;20:177–182.
  42. Landry PS, Sadasivan KK, Marino AA, Albright JA. Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthop Relat Res. 1997;338:262–270.
  43. Vander Molen MA, Donahue HJ, Rubin CT, McLeod KJ. Osteoblastic networks with deficient coupling: Differential effects of magnetic and electric field exposure. Bone. 2000;27:227–231.
  44. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ. Combined magnetic fields increased net calcium flux in bone cells. Calcif Tissue Int. 1994;55:376–380.
  45. Darendeliler MA, Sinclair PM, Kusy RP. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement. Am J Orthod Dentofacial Orthop. 1995;107:578–588.
  46. Bassett CA. Beneficial effects of electromagnetic fields. J Cell Biochem. 1993;51:387–393.
  47. Darendeliler MA, Zea A, Shen G, Zoellner H. Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: A preliminary study. Aust Dent J. 2007;52:282–287.
  48. Dogru M, Akpolat V, Dogru AG, Karadede B, Akkurt A, Karadede MI. Examination of extremely low frequency electromagnetic fields on orthodontic tooth movement in rats. Biotechnol Biotechnol Equip. 2014;28:118–122.
  49. Showkatbakhsh R, Jamilian A, Showkatbakhsh M. The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod. 2010;11:52–56.
  50. Rubin C, Turner AS, Müller R, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res. 2002;17:349–357.
  51. Kopher RA, Mao JJ. Suture growth modulated by the oscillatory component of micromechanical strain. J Bone Miner Res. 2003;18:521–528.
  52. Peptan AI, Lopez A, Kopher RA, Mao JJ. Responses of intramembranous bone and sutures upon in vivo cyclic tensile and compressive loading. Bone. 2008;42:432–438.
  53. Nishimura M, Chiba M, Ohashi T, et al. Periodontal tissue activation by vibration: Intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2008;133:572–583.
  54. Dubravko P, Ravikumar A, Vishnu R, Gakunga PT. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: A double-blind, randomized controlled trial. Semin Orthod. 2015;21:187–194. doi: 10.1053/j.sodo.2015.06.005
  55. Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Angle Orthod. 2016;86:74–80.
  56. Teixeira CC, Khoo E, Tran J, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89:1135–1141.
  57. Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci. 2008;116:89–97.
  58. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2015;148:440–449.
  59. Woodhouse NR, DiBiase AT, Johnson N, et al. Supplemental vibrational force during orthodontic alignment: A randomized trial. J Dent Res. 2015;94:682–689.
  60. Miles P, Fisher E, Pandis N. Assessment of the rate of premolar extraction space closure in the maxillary arch with the AcceleDent Aura appliance vs no appliance in adolescents: A single-blind randomized clinical trial. Am J Orthod Dentofacial Orthop. 2018;153:8–14.
  61. Nahas AZ, Samara SA, Rastegar-Lari TA. Decrowding of lower anterior segment with and without photobiomodulation: A single center, randomized clinical trial. Lasers Med Sci. 2017;32:129–135.
  62. Hillenkamp F, Pratesi R, Sacchi CA. Lasers in Biology and Medicine. Boston, MA: Springer; 1980;3:37–68.
  63. Eells JT, Henry MM, Summerfelt P, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100:3439–3444.
  64. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med. 2007;39:373–378.
  65. Vladimirov YA, Osipov AN, Klebanov GI. Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Mosc). 2004;69:81–90.
  66. Casalechi HL, Nicolau RA, Casalechi VL, Silveira L, De Paula AM, Pacheco MT. The effects of low-level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci. 2009;24:659–665.
  67. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11:143–155.
  68. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci. 2003;18:95–99.
  69. Goulart CS, Nouer PR, Mouramartins L, Garbin IU, de Fátima Zanirato Lizarelli R. Photoradiation and orthodontic movement: Experimental study with canines. Photomed Laser Surg. 2006;24:192–196.
  70. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: A preliminary study. Lasers Med Sci. 2008;23:27–33.
  71. Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26:282–291.
  72. Kim YD, Kim SS, Kim SJ, Kwon DW, Jeon ES, Son WS. Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats. Lasers Med Sci. 2010;25:25–31.
  73. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997;111:525–532.
  74. Shaughnessy T, Kantarci A, Kau CH, Skrenes D, Skrenes S, Ma D. Intraoral photobiomodulation-induced orthodontic tooth alignment: A preliminary study. BMC Oral Health. 2016;16:3.
  75. Üretürk SE, Saraç M, Fıratlı S, Can ŞB, Güven Y, Fıratlı E. The effect of low-level laser therapy on tooth movement during canine distalization. Lasers Med Sci. 2017;32:757–764.
  76. Al-Sayed Hasan MMA, Sultan K, Hamadah O. Low-level laser therapy effectiveness in accelerating orthodontic tooth movement: A randomized controlled clinical trial. Angle Orthod. 2017;87:499–504.
  77. Marquezan M, Bolognese AM, Araújo MT. Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg. 2010;28:757–762.
  78. Chung SE, Tompson B, Gong SG. The effect of light emitting diode phototherapy on rate of orthodontic tooth movement: A split mouth, controlled clinical trial. J Orthod. 2015;42:274–283.
  79. Gu J, Tang JS, Skulski B, et al. Evaluation of Invisalign treatment effectiveness and efficiency compared with conventional fixed appliances using the Peer Assessment Rating index. Am J Orthod Dentofacial Orthop. 2017;151:259–266.
  80. Djeu G, Shelton C, Maganzini A. Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. Am J Orthod Dentofacial Orthop. 2005;128:292–298.
  81. Buschang PH, Shaw SG, Ross M, Crosby D, Campbell PM. Comparative time efficiency of aligner therapy and conventional edgewise braces. Angle Orthod. 2014;84:391–396.
  82. Hennessy J, Garvey T, Al-Awadhi EA. A randomized clinical trial comparing mandibular incisor proclination produced by fixed labial appliances and clear aligners. Angle Orthod. 2016;86:706–712.
  83. Stolzenberg J. The Russell attachment and its improved advantages. Int J Orthodontia Dent Child. 1935;21:837–840.
  84. Harradine N. The history and development of self-ligating brackets. Semin Orthodont. 2008;14:5–18.
  85. O’Dywer L, Littlewood SJ, Rahman S, Spencer RJ, Barber SK, Russell JS. A multi-center randomized controlled trial to compare a self-ligating bracket with a conventional bracket in a UK population: Part 1: Treatment efficiency. Angle Orthod. 2016;86:142–148.
  86. Johansson K, Lundström F. Orthodontic treatment efficiency with self-ligating and conventional edgewise twin brackets: A prospective randomized clinical trial. Angle Orthod. 2012;82:929–934.
  87. Guilford SH. Orthodontia, or Malposition of the Human Teeth, Its Prevention and Remedy. Philadelphia, PA: Spangler&Davis; 1893.
  88. Köle H. Surgical operations of the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol. 1959;12:515–529.
  89. Frost MH. The biology of fracture healing: An overview for clinicians. Part I. Clin Orthop Relat Res. 1989;248:283–293.
  90. Yaffe A, Fine N, Binderman I. Regional accelerated phenomenon in the mandible following mucoperiosteal flap surgery. J Periodontol. 1994;65:79–83.
  91. Murphy KG, Wilcko MT, Wilcko WM, Ferguson DJ. Periodontal accelerated osteogenic orthodontics: A description of the surgical technique. J Oral Maxillofac Surg. 2009;67:2160–2166.
  92. Mehra P. Corticotomy-facilitated orthodontics: Surgical considerations. In: Brugnami F, Caiazzo A, eds. Orthodontically Driven Corticotomy: Tissue Engineering to Enhance Orthodontic and Multidisciplinary Treatment. Hoboken, NJ: John Wiley & Sons; 2014.
  93. Wilcko WM, Wilcko T, Bouquot JE, Ferguson DJ. Rapid orthodontics with alveolar reshaping: Two case reports of decrowding. Int J Periodontics Restorative Dent. 2001;21:9–19.
  94. Ericsson I, Thilander B, Lindhe J. Periodontal conditions after orthodontic tooth movements in the dog. Angle Orthod. 1978;48:210–218.
  95. Murphy NC, Wilcko MT, Bissada NF, Davidovitch Z, Enlow DH, Dashe J. Orthodontic applications of alveolus decortication. In: Brugnami F, Caiazzo A, eds. Orthodontically Driven Corticotomy: Tissue Engineering to Enhance Orthodontic and Multidisciplinary Treatment. Hoboken, NJ: John Wiley & Sons; 2014.
  96. Montesinos FA, Linares TS, Pérez-Gasque BM. Accelerated Osteogenic Orthodontics™ for retreatment of a patient with diminished root length and absence of the maxillary central incisor. Saudi Dent J. 2015;27:228–234.
  97. Wilcko MT, Wilko WM, Bissada NF. An evidence-based analysis of periodontally accelerated orthodontic and osteogenic techniques: A synthesis of scientific perspective. Semin Orthodont. 2008;14:305–316.
  98. Wilcko WM, Wilcko MT, Bouquot JE, Ferguson DJ. Accelerated orthodontics with alveolar reshaping. J Ortho Practice. 2000;10:63–70.
  99. Park YG, Kang SG, Kim SJ. Accelerated tooth movement by Corticision as an osseous orthodontic paradigm. Kinki Tokai Kyosei Shika Gakkai Gakujyutsu Taikai Sokai. 2006;48:6.
  100. Kim SJ, Park YG, Kang SG. Effects of Corticision on paradental remodeling in orthodontic tooth movement. Angle Orthod. 2009;79:284–291.
  101. Dibart S, Keser EI. Piezocision™. In: Brugnami F, Caiazzo A, eds. Orthodontically Driven Corticotomy: Tissue Engineering to Enhance Orthodontic and Multidisciplinary Treatment. Hoboken, NJ: John Wiley & Sons; 2014.
  102. Pobanz JM, Storino D, Nicozisis J. Orthodontic acceleration: Propel alveolar micro-osteoperforation. Orthotown. 2013;5:22–25.
  103. Eder SM. Accelerating tooth movement with micro-osteoperforation. Orthodontic Products. http://www.orthodonticproductsonline.com/ 2012/09/accelerating-tooth-movement-with-micro-osteoperforation/. Published September 28, 2012.
  104. Alikhani M, Raptis M, Zoldan B, et al. Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop. 2013;144:639–648.
  105. Librizzi Z, Kalajzic Z, Camacho D, Yadav S, Nanda R, Uribe F. Comparison of the effects of three surgical techniques on the rate of orthodontic tooth movement in a rat model. Angle Orthod. 2017;87:717–724.
  106. Sanjideh PA, Rossouw PE, Campbell PM, Opperman LA, Buschang PH. Tooth movements in foxhounds after one or two alveolar corticotomies. Eur J Orthod. 2010;32:106–113.
  107. Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop. 2011;139(Suppl 4):83–101.
  108. Sebaoun JD, Kantarci A, Turner JW, Carvalho RS, Van Dyke TE, Ferguson DJ. Modeling of trabecular bone and lamina dura following selective alveolar decortication in rats. J Periodontol. 2008;79:1679–1688.
  109. Charavet C, Lecloux G, Bruwier A, et al. Localized piezoelectric alveolar decortication for orthodontic treatment in adults: A randomized controlled trial. J Dent Res. 2016;95:1003–1009.
  110. Fischer TJ. Orthodontic treatment acceleration with corticotomy-assisted exposure of palatally impacted canines. Angle Orthod. 2007;77:417–420.
  111. Lee JK, Chung KR, Baek SH. Treatment outcomes of orthodontic treatment, corticotomy-assisted orthodontic treatment, and anterior segmental osteotomy for bimaxillary dentoalveolar protrusion. Plast Reconstr Surg. 2007;120:1027–1036.
  112. Al-Naoum F, Hajeer MY, Al-Jundi A. Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial. J Oral Maxillofac Surg. 2014;72:1880–1889.
  113. Małyszko M, Szarmach I, Szarmach J, Marczuk-Kolada G, Grycz M. Post-traumatic ankylosis of the incisor, orthodontic and surgical treatment: A case report [in Polish]. Forum Ortodont. 2015;11:296–305.
  114. Kim SJ, Moon SU, Kang SG, Park YG. Effects of low-level laser therapy after corticision on tooth movement and paradental remodeling. Lasers Surg Med. 2009;41:524–533.
  115. Cassetta M, Altieri F, Pandolfi S, Giansanti M. The combined use of computer-guided, minimally invasive, flapless corticotomy and clear aligners as a novel approach to moderate crowding: A case report. Korean J Orthod. 2017;47:130–141.
  116. Cassetta M, Altieri F, Barbato E. The combined use of corticotomy and clear aligners: A case report. Angle Orthod. 2016;86:862–870.