Dental and Medical Problems

Dent. Med. Probl.
Index Copernicus (ICV 2019) – 118.76
MNiSW – 20
CiteScore (2020) – 1.2
Average rejection rate (2020) – 88.71%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2017, vol. 54, nr 4, October-December, p. 409–415

doi: 10.17219/dmp/79134

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Current trends and clinical applications of optical coherence tomography in orthodontics: A literature review

Współczesne możliwości wykorzystania optycznej tomografii koherencyjnej w ortodoncji – przegląd piśmiennictwa

Hemanth Tumkur Lakshmikantha1,B,C,D, Naresh Kumar Ravichandran2,B,C, Hyo-Sang Park1,A,D,E,F

1 Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, Korea

2 School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, Korea


This paper presents an overview of the current knowledge about non-invasive investigations using optical coherence tomography (OCT) – structural imaging of oral tissues and biomaterials applied in vivo and in vitro – employed in the field of orthodontics. Optical coherence tomography is an emerging technology for producing high-resolution cross-sectional imagery. OCT provides cross-sections of tissues in a non-contact and non-invasive manner. The device measures the time delay and the intensity of light scattered or reflected off of biological tissues, which results in tomographic imaging of their internal structure. This is achieved by scanning tissues at a low resolution. This paper aims to describe the application of OCT in the field of orthodontics, through previous studies investigating the development and disorders of natural tooth hard tissues; the paper also describes OCT studies on dental demineralisation and dental biomaterial characterisation. We explain the working principles of OCT and mention different types of OCT systems in use. Comparisons between OCT and other commonly used orthodontic diagnostic aids are also made and the possible future implications of OCT in orthodontics is discussed.

Key words

optical coherence tomography, non-invasive investigation, orthodontics

Słowa kluczowe

optyczna tomografia koherencyjna, badania nieinwazyjne, ortodoncja

References (48)

  1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Sci (New York, NY). 1991;254(5035):1178.
  2. Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2008;13:64003.
  3. Hangai M, Ojima Y, Gotoh N, et al. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmol. 2007;114:763–773.
  4. Yasuno Y, Hong Y, Makita S, et al. In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2007;15:6121–6139.
  5. Pagnoni A, Knuettel A, Welker P, et al. Optical coherence tomography in dermatology. Ski Res Technol. 1999;5:83–87.
  6. Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt. 2004;9:287–291.
  7. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterol. 2001;120:7–12.
  8. Evans JA, Poneros JM, Bouma BE, et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4:38–43.
  9. Wilder-Smith P, Lee K, Guo S, et al. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: Preliminary studies in 50 patients. Lasers Surg Med. 2009;41:353–357.
  10. Colston BW, Sathyam US, DaSilva LB, Everett MJ, Stroeve P, Otis LL. Dental oct. Opt Express. 1998;3:230–238.
  11. Baumgartner A, Dichtl S, Hitzenberger CK, et al. Polarization-sensitive optical coherence tomography of dental structures. Caries Res. 2000;34:59–69.
  12. Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmol. 2005;112:1734–1746.
  13. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21:1361.
  14. Brezinski ME, Tearney GJ, Weissman NJ, et al. Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart. 1997;77:397–403.
  15. Schmitt JM, Knuttel A, Yadlowsky M, Eckhaus MA. Optical-coherence tomography of a dense tissue: Statistics of attenuation and backscattering. Phys Med Biol. 1994;39:1705.
  16. Schmitt JM, Yadlowsky MJ, Bonner RF. Subsurface imaging of living skin with optical coherence microscopy. Dermatol. 1995;191:93–98.
  17. Fujimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1:970–972.
  18. Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy: Properties and demonstration of vascular pathology. SPIE milestone Ser. 2001;165:628–635.
  19. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2:9–25.
  20. Zvyagin AV, FitzGerald JB, Silva K, Sampson DD. Real-time detection technique for Doppler optical coherence tomography. Opt Lett. 2000;25:1645–1647.
  21. Yang VXD, Mao YX, Munce N, et al. Interstitial Doppler optical coherence tomography. Opt Lett. 2005;30:1791–1793.
  22. De Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22:934–936.
  23. Yasuno Y, Makita S, Sutoh Y, Itoh M, Yatagai T. Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt Lett. 2002;27:1803–1805.
  24. Pircher M, Goetzinger E, Leitgeb R, Hitzenberger CK. Three dimensional polarization sensitive OCT of human skin in vivo. Opt Express. 2004;12:3236–3244.
  25. Pan Y, Xie H, Fedder GK. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt Lett. 2001;26:1966–1968.
  26. Herz PR, Chen Y, Aguirre AD, et al. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. Opt Express. 2004;12:3532–3542.
  27. Lesaffre M, Farahi S, Gross M, Delaye P, Boccara AC, Ramaz F. Acousto-optical coherence tomography using random phase jumps on ultrasound and light. Opt Express. 2009;17:18211–18218.
  28. Lesaffre M, Farahi S, Boccara AC, Ramaz F, Gross M. Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light. JOSA A. 2011;28:1436–1444.
  29. Colston BW, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt. 1998;37:3582–3585.
  30. Drexler W, Fujimoto JG. Optical Coherence Tomography: Technology and Applications. Springer; 2015.
  31. Takada K, Yokohama I, Chida K, Noda J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt. 1987;26:1603–1606.
  32. Youngquist RC, Carr S, Davies DEN. Optical coherence-domain reflectometry: A new optical evaluation technique. Opt Lett. 1987;12:158–160.
  33. Roberts-Harry EA, Clerehugh V. Subgingival calculus: Where are we now? A comparative review. J Dent. 2000;28:93–102.
  34. Meissner G, Oehme B, Strackeljan J, Kocher T. Clinical subgingival calculus detection with a smart ultrasonic device: A pilot study. J Clin Periodontol. 2008;35:126–132.
  35. Meissner G, Oehme B, Strackeljan J, Kocher T. A new system to detect residual subgingival calculus: In vitro detection limits. J Clin Periodontol. 2006;33:195–199.
  36. Krause F, Braun A, Jepsen S, Frentzen M. Detection of subgingival calculus with a novel LED-based optical probe. J Periodontol. 2005;76:1202–1206.
  37. Krause F, Braun A, Frentzen M. The possibility of detecting subgingival calculus by laser-fluorescence in vitro. Lasers Med Sci. 2003;18:32–35.
  38. Thomas SS, Mohanty S, Jayanthi JL, Varughese JM, Balan A, Subhash N. Clinical trial for detection of dental caries using laser-induced fluorescence ratio reference standard. J Biomed Opt. 2010;15:27001.
  39. Leão Filho JCB, Braz AKS, Araujo RE de, Tanaka OM, Pithon MM. Enamel quality after debonding: Evaluation by optical coherence tomography. Braz Dent J. 2015;26:384–389.
  40. Leão Filho JCB, Braz AKS, de Souza TR, de Araujo RE, Pithon MM, Tanaka OM. Optical coherence tomography for debonding evaluation: An in-vitro qualitative study. Am J Orthod Dentofac Orthop. 2013;143:61–68.
  41. Seeliger J, Machoy M, Koprowski R, Safranow K, Gedrange T, Woźniak K. Enamel thickness before and after orthodontic treatment analysed in optical coherence tomography. Biomed Res Int. 2017;2017:8390575.
  42. Koprowski R, Machoy M, Woźniak K, Wróbel Z. Automatic method of analysis of OCT images in the assessment of the tooth enamel surface after orthodontic treatment with fixed braces. Biomed Eng Online. 2014;13:48.
  43. Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. 2014;42:547–555.
  44. Todea C, Negrutiu ML, Balabuc C, et al. Optical coherence tomography applications in dentistry. Timisoara Med J. 2010;60:5–17.
  45. Pithon MM, Dos Santos MJ, Andrade CSS, et al. Effectiveness of varnish with CPP–ACP in prevention of caries lesions around orthodontic brackets: An OCT evaluation. Eur J Orthod. 2014;37:177–182.
  46. Mărcăuţeanua C, Demjana E, Sinescub C, et al. Preliminary optical coherence tomography investigation of the temporo-mandibular joint disc. Proc. SPIE. 2010:75542,G-1.
  47. Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: A preliminary study with optical coherence tomography. Am J Orthod Dentofac Orthop. 2009;135:252–259.
  48. Rashidifard C, Vercollone C, Martin S, Liu B, Brezinski ME. The application of optical coherence tomography in musculoskeletal disease. Arthritis. 2013;2013:563268.