Dental and Medical Problems

Dent. Med. Probl.
Index Copernicus (ICV 2019) – 118.76
MNiSW – 20
CiteScore (2020) – 1.2
Average rejection rate (2020) – 88.71%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2017, vol. 54, nr 4, October-December, p. 319–326

doi: 10.17219/dmp/78913

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Finite element analysis of newly introduced plates for mandibular condyle neck fracture treatment by open reduction and rigid fixation

Metoda elementów skończonych w ocenie nowo wprowadzanych płytek do ograniczenia otwierania i sztywnej stabilizacji w leczeniu złamania szyjki wyrostka kłykciowego żuchwy

Marcin Kozakiewicz1,A,C,D,F, Jacek Świniarski2,A,B,C,E,F

1 Clinic and Department of Maxillofacial Surgery, Medical University of Lodz, Łódź, Poland

2 Department of Strength of Materials and Structures, Faculty of Mechanical Engineering, Lodz University of Technology, Poland

Abstract

Background. Fractures of the mandibular condyle have been a topic of controversy and discussion in the area of maxillofacial trauma for many years. Any treatment should provide accurate reduction and stability of fractured bony fragments to enable further uncomplicated mandibular function. Recently, 2 novel plates were introduced: strut and rhombus.
Objectives. To compare the newly introduced plates for mandibular condyle neck fracture treatment.
Material and Methods. A total of 6 variants of fixing by 5 screws were tested by finite element analysis: strut plate in the normal position (T1), strut plate in an inverted position (T2), rhombus plate with 2 screws positioned close to the lower border sliding middle holes (T3), rhombus one with a mesial screw positioned close to the upper border of the sliding hole and distal screw positioned close to the lower border of the sliding hole (T4), rhombus one with both screws in sliding holes positioned close to the upper border of the holes (T5), and modified rhombus plate where all holes are round (T6). Equivalent maximal stress in the fixing material and relative displacement in the fracture line were calculated, and the influence of the act of mastication on fatigue failure was evaluated.
Results. The position of the plate and location of the fixing screws are crucial for stabilization of the reduced bone fragments. Any adjustments of these 2 plates by bending, flattening or cutting are unsafe. Mean relative displacement in the fracture line and equivalent maximal stress were T1: 958 ±312 μm (the worst p < 0.05), 869 MPa; T2: 463 ±130 μm, 915 MPa; T3: 625 ±222 μm, 1150 MPa; T4: 624 ±273 μm, 1160 MPa; T5: 485 ±192 μm, 544 MPa; and T6: 467 ±172 μm, 549 MPa, respectively.
Conclusion. It should be noted, comparing both plates, that the rhombus plate equipped only with round holes (not sliding holes) presented its superiority within this pairing. It is mechanically relatively resistant and relatively durable in spite of the design being only partially according to compression and traction force propagation in the mandibular condyle.

Key words

treatment, finite element method, fracture, mandibular condyle neck, fixing material

Słowa kluczowe

leczenie, metoda elementów skończonych, złamanie, szyjka wyrostka kłykciowego żuchwy, materiał zespalający

References (30)

  1. Puch A, Kurczyński M, Arkuszewski P, Bogusiak K. Overview of emergency department visits in Craniomaxillofacial and Oncological Clinic of Medical University in Lodz. Dent Med Probl. 2016;53:244–252.
  2. Gealh WC, Costa JV, FerreiraGM, Iwaki Filho L. Comparative study of the mechanical resistance of 2 separate plates and 2 overlaid plates used in the fixation of the mandibular condyle: An in vitro study. J Oral MaxillofacSurg. 2009;67:738–743.
  3. Pilling E, Eckelt U, Loukota R, Schneider K, Stadlinger B. Comparative evaluation of ten different condylar base fracture osteosynthesis techniques. Br J Oral Maxillofac Surg. 2010;48:527–531.
  4. Vesnaver A, Ahcan U, Rozman J. Evaluation of surgical treatment in mandibular condyle fractures. J Craniomaxillofac Surg. 2012;40:647–653.
  5. DePuy Synthes materials. http://synthes.vo.llnwd.net/o16/LLNWMB8/INT%20Mobile/Synthes%20International/Product%20Support%20Material/legacy_Synthes_PDF/036.001.290.pdf. Accessed September 9, 2017.
  6. KLS Martin Products. http://www.klsmartin.com/products/implants-and-implant-systems/cmf/titanium-osteosynthesis/mandibula/rhombic-3d/?L=2. Accessed September 9, 2017.
  7. Pekedis M, Yildiz H. Comparison of fatigue behaviour of eight different hip stems: A numerical and experimental study. J Biomed Sci Engin. 2011;4:643–650.
  8. Kozakiewicz M, Świniarski J. “A” shape plate for open rigid internal fixation of mandible condyle neck fracture. J Cranio-Maxillofac Surg. 2014;42:730–737.
  9. Mesnard M, Ramos A, Ballu A, Morlier J, Cid M, Simoes JA. Biomechanical analysis comparing natural and alloplastic temporomandibular joint replacement using a finite element model. J Oral Maxillofac Surg. 2011;69:1008–1017.
  10. Iwasaki LR, Baird BW, McCall Jr WD, Plickel JC. Muscle and temporomandibular joint forces associated with chin cup loading predicted by ical modeling. Am J Orthod Dentofacial Orthop. 2003;124:530–540.
  11. Ramos A, Completo A, Relvas C, Mesnard M, Simoes JA. Straight, semi-anatomic and anatomic TMJ implants: The influance of condylar geometry and bone fixation screws. J Cran Maxilllofac Surg. 2011;39:343–350.
  12. Korioth TW, Romilly DP, Hannam AG. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol. 1992;38:69–96.
  13. Motoyoshi M, Ueno S, Okazaki K, Shimuzi N. Bone stress for a mini implant close to the roots of adjacent teeth-3D finite element analysis. Int J Oral Maxillofacial Surg. 2009;38:363–368.
  14. Ichim I, Kieser JA, Swain MV. Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions. Arch Oral Biol. 2012;52:465–473.
  15. Field C, Ichim I, Swain MV, et al. Mechanical responses to orthodontic loading: A 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop. 2009;135:174–181.
  16. Krenkel C. Treatment of mandibular-condylar fractures. Atlas Oral Maxillofac Surg Clin North Am. 1997;5:127–155.
  17. Huber MT. Specific deformation work as a measure of material damage. Czas Tech. 1904;22:38–50.
  18. Mises R. Mechanik der festen Körper im plastisch - deformablen Zustand. Göttinger Nachrichten. Mathematisch-Physikalische Klasse. Berlin: Weidmannsche Buchhandlung;1913:582–592
  19. Hencky H. Über langsame stationäre Stromungen in plastischen Massen mit Rucksicht auf die Vorgänge beim Walzen, Pressen und Ziehen von Metallen. Zeit Math Mech. 1925;5:115–124
  20. Lauer G, Pradel W, Schneider M, Eckelt U. A new 3-dimensional plate for transoral endoscopic-assisted osteosynthesis of condylar neck fractures. J Oral Maxillofac Surg. 2007;65:964–971.
  21. Parascandolo S, Spinzia A, Parascandolo S, Piombino P, Califano L. Two load sharing plates fixation in mandibular condylar fractures: Biomechanical basis. J Craniomaxillofac Surg. 2010;38:385–390.
  22. Seemann R, Schicho K, Reichwein A, Eisenmenger G, Ewers R, Wagner A. Clinical evaluation of mechanically optimized plates for the treatment of condylar process fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:1–4.
  23. Wagner A, Krach W, Schicho K, Undt G, Ploder O, Ewers R. A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:678–686.
  24. Costa FWG, Bezerra MF, Ribeiro TR, Pouchain EC, Sabóia VPA, Soares ECS. Biomechanical analysis of titanium plate systems in mandibular condyle fractures. A systematized literature review. Acta Cirúrg Bras. 2012;27:424–429.
  25. Kozakiewicz M, Świniarski J. Treatment of high fracture of the neck of the mandibular condylar process by rigid fixation performed by lag screws: Finite element analysis. Dent Med Probl. 2017;54:223–228.
  26. Luo S, Li B, Long X, Deng M, Cai H, Cheng Y. Surgical treatment of sagittal fracture of mandibular condyle using long-screw osteosynthesis. J Oral Maxillofac Surg. 2011;69:1988–1994.
  27. Aquilina P, Chamoli U, Parr WCH, Clausen PD, Wroe S. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle. Br J Oral Maxillofac Surg. 2013;51:326–331.
  28. Xie ST, Singhal D, Chen CT, Chen YR. Functional and radiologic outcome of open reduction and internal fixation of condylar head and neck fractures using miniplate or microplate system. Ann Plast Surg. 2013;71(Suppl. 1):S61–S66.
  29. Nogami S, Takahashi T, Yamauchi K, et al. Clinical comparison between the retromandibular approach for reduction and fixation and endoscope-assisted open reduction and internal fixation for mandibular condyle fractures. J Craniofac Surg. 2012;23:1815–1818.
  30. Loster JE, Wieczorek A, Ryniewicz WI. Condylar guidance angles obtained from panoramic radiographic images: An evaluation of their reproducibility. Dent Med Probl. 2017;54:35–40.