Dental and Medical Problems

Dent Med Probl
Impact Factor (IF 2023) – 2.7
Journal Citation Indicator (JCI 2023) - 1.06
Scopus CiteScore (2023) – 4.0 (CiteScore Tracker – 4.9)
Index Copernicus (ICV 2023) – 181.00
MNiSW – 70 pts
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – bimonthly


 

Download original text (PL)

Dental and Medical Problems

2016, vol. 53, nr 3, July-September, p. 345–351

doi: 10.17219/dmp/62575

Publication type: original article

Language: Polish

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Ocena wpływu trybu fali lasera diodowego o długości 980 nm na wzrost temperatury mierzonej za pomocą sondy typu k-02 – wyniki wstępne

Assessment of an Impact of a Diode Laser Mode with Wavelength of 980 nm on a Temperature Rise Measured by Means of k-02 Thermocouple: Preliminary Results

Jacek Matys1,2,A,B,C,D, Kinga Grzech-Leśniak3,E, Rafał Flieger4,E, Marzena Dominiak1,E,F

1 Katedra i Zakład Chirurgii Stomatologicznej, Uniwersytet Medyczny we Wrocławiu, Wrocław, Polska

2 Prywatna Praktyka Stomatologiczna, Wschowa, Polska

3 PerioCare – Specjalistyczne Centrum Stomatologiczne, Kraków, Polska

4 Prywatna Praktyka Stomatologiczna, Kościan, Polska

Streszczenie

Wprowadzenie. Lasery diodowe są wykorzystywane w chirurgii tkanek miękkich. Nowoczesne lasery diodowe umożliwiają ustawienie mocy wynoszącej 0–10 W wraz z modyfikacją długości impulsów (Ton) i przerwy między nimi (Toff).
Cel pracy. Rozstrzygnięcie, czy istnieje różnica we wzroście temperatury podczas działania lasera diodowego w trybie ciągłym (CW) i pulsacyjnym (PW) z różnymi ustawieniami Ton i Toff oraz mocy lasera. Oceniano ponadto gradient temperatury w trybie CW i PW dla tej samej dawki energii wysłanej przez laser diodowy.
Materiał i metody. Sondę temperatury typu k oraz rękojeść lasera diodowego umieszczono nieruchomo w imadle. Wykonano naświetlania sondy za pomocą lasera diodowego 980 nm pracującego w trybie ciągłym (CW) i pulsacyjnym (PW) z różnymi ustawieniami długości impulsu (Ton) i czasu przerwy (Toff). Parametry lasera były następujące: włókno – 200 μm, odległość włókna od sondy – 1 mm, tryb CW (moc w W) – 0,5; 1; 1,5; 2; 2,5; 3; 3,5; 4, tryb PW (W) – 0,5; 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 5,5; 6, Ton/Toff – 100/100, 200/200, 300/300, 400/400, 500/500. Pomiar temperatury wykonano po 10, 20, 30 i 60 s naświetlania za pomocą skalibrowanego cyfrowego termometru.
Wyniki. Zaobserwowano istotny wzrost temperatury wraz ze zwiększaniem mocy w trybie CW i PW. Przyrost temperatury w trybie CW był większy niż w PW w zakresie mocy 0,5–4 W. Nie zaobserwowano istotnej różnicy w wynikach wzrostu temperatury w zależności od stosunku Ton/Toff. Nie stwierdzono także znaczących różnic dla lasera diodowego pracującego w trybie CW i PW po 60 s dla jednakowych wartości wysłanej energii (30, 60, 90, 120, 160, 180 J).
Wnioski. Wzrost temperatury dla tej samej mocy lasera jest większy w trybie pracy ciągłej. Wysłanie jednakowej energii w identycznym czasie przez laser diodowy powoduje jednak zwiększenie temperatury podczas pracy w trybie pulsacyjnym.

Abstract

Background. Diode lasers are utilized successfully in a soft tissue surgery. Modern diode lasers allow to set power in the range of 0–10 W with modification of a pulse and interval duration (Ton and Toff).
Objectives. The aim of this study was to establish if there is a difference in temperature rise during operation of pomoa diode laser in continuous and pulsed wave mode (CW and PW) with different Ton/Toff settings and laser power. The temperature gradient was assessed in CW and PW mode for the same energy dose sent by the laser.
Material and Methods. Thermocouple and a diode laser handle were clamped stationary in a vise. Thermocouple was irradiated using a 980 nm diode laser, in CW and PW mode with a different Ton/Toff. Laser parameters were as follows: fiber – 200 μm, distance of the thermocouple to the fiber – 1 mm, CW mode (power in W) – 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, PW mode (W) – 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, Ton/Toff – 100/100, 200/200, 300/300, 400/400, 500/500. The temperature was measured continuously after 10, 20, 30 and 60 s of exposure using a calibrated digital thermometer.
Results. The results indicated a significant increase in temperature with the increase of power in CW and PW mode. The temperature increase for CW was higher compared to PW mode in a power range 0.5–4 W. There was no difference in results of temperature rise depending on Ton/Toff ratio. The results showed no significant difference in temperature increase for a diode laser operating in CW and PW mode, after 60 s, for the same energy values (30, 60, 90, 120, 160, 180 J).
Conclusion. The temperature increase for the same laser power is bigger in CW mode. However, sending the same energy dose at the same time by a diode laser results in a higher increase in temperature when operating in PW mode.

Słowa kluczowe

temperatura, laser diodowy, fala ciągła, fala pulsacyjna, sonda temperatury

Key words

temperature, diode laser, continuous wave, pulsed wave, thermocouple

References (25)

  1. Parker S.: Surgical laser use in implantology and endodontics. Br. Dent. J. 2007, 202, 377–386.
  2. Azma E., Safavi N.: Diode laser application in soft tissue oral surgery. Laser Med. Sci. 2013, 4, 206–211.
  3. Barot V.J., Vishnoi S.L., Chandran S., Bakutra G.V.: Laser: The torch of freedom for ankyloglossia. Indian J. Plast. Surg. 2014, 47, 418–422.
  4. Berlien H.P., Müller G.J., Breuer H., Krasner N., Okunata T., Sliney D.: Applied laser medicine. Springer Science & Business Media, Berlin 2003, 61–62.
  5. Sheehy E.C., Brailsford S.R., Kidd E.A., Beighton D., Zoitopoulos L.: Comparison between visual examination and a laser fluorescence system for in vivo diagnosis of occlusal caries. Caries Res. 2001, 35, 421–426.
  6. Bjordal J.M., Bensadoun R.J., Tuner J., Frigo L., Gjerde K., Lopes-Martins R.A.: A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy – induced oral mucositis. Support. Care Cancer 2011, 19, 1069–1077.
  7. Takasaki A.A., Aoki A., Mizutani K., Schwarz F., Sculean A., Wang C.Y., Koshy G., Romanos G., Ishikawa I., Izumi Y.: Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol. 2000. 2009, 51, 109–140.
  8. Stubinger S., Saldamli B., Jurgens P., Ghazal G., Zeilhofer H.F.: Soft tissue surgery with the diode laser-theoretical and clinical aspects. Schweiz. Monatsschr. Zahnmed. 2006, 116, 812–820.
  9. Zając A., Polakowski H., Piatkowski T., Kastek M.: Measurements of tissue temperatures during semiconductor laser welding process. Symposium on Photonics and Optoelectronics SOPO, Shanghai 2012, 1–4.
  10. Matys J., Botzenhart U., Gedrange T., Dominiak M.: Thermodynamic effects after Diode and Er:YAG laser irradiation of grade IV and V titanium implants placed in bone – an ex vivo study. Preliminary report. Biomed. Engin. Biomed. Technik., 2016.
  11. Pozza D.H., Fregapani P.W., Weber J.B., de Oliveira M.G., de Oliveira M.A., Ribeiro Neto N., de Macedo Sobrinho J.B.: Analgesic action of laser therapy (LLLT) in an animal model. Med. Oral Patol. Oral Cir. Bucal. 2008, 13, 648–652.
  12. Williams J.A., Pearson G.J., Colles M.J.: Antibacterial action of photoactivated disinfection [PAD] used on endodontic bacteria in planktonic suspension and in artificial and human root canals. J. Dent. 2006, 34, 363–371.
  13. Freitas P., Simoes A.: Lasers in dentistry: guide for clinical practice. Wiley-Blackwell, Oxford 2015, 93–94.
  14. Romanos G., Nentwig G.H.: Diode laser (980 nm) in oral and maxillofacial surgical procedures: Clinical observations based on clinical applications. J. Clin. Laser Med. Surg. 1999, 17, 193–197.
  15. Eriksson A.R., Albrektsson T.: Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J. Prosthet. Dent. 1983, 50, 101–107.
  16. Eriksson A.R., Albrektsson T., Magnusson B.: Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand. J. Plast. Recons. 1984, 18, 261–268.
  17. Azevedo L.H., Galletta V.C., Eduardo Cde P., Migliari D.A.: Venous lake of the lips treated using photocoagulation with high-intensity diode laser. Photomed. Laser Surg. 2010, 28, 263–265.
  18. Martelli F.S., De Leo A., Zinno S.: Laser in odontostomatologia – applicazioni cliniche. Masson SpA., Milan 2000, 59–72 [in Italian].
  19. Ana P.A., Bachmann L., Zezell D.M.: Lasers effects on enamel for caries prevention. Laser Phys. 2006, 16, 865–875.
  20. Bachmann L., Craievich A.F., Zezell D.M.: Crystalline structure of dental enamel after Ho:YLF laser irradiation. Arch. Oral Biol. 2004, 49, 923–929.
  21. Niemz M.H., Markolf H.: Laser-tissue interactions – fundamentals and applications. Springer Science & Business Media, Berlin 2007, 77–78.
  22. Zezell D.M., Ana P.A., Pereira T.M., Correa P.R., Walter F.: Heat generation and transfer on biological tissues due to high-intensity laser irradiation. [In:] Developments in Heat Transfer. Ed.: Bernardes M.A.S, In Tech, Rijeka 2011, 227–246.
  23. Zezell D.M., Ribeiro M.S.: Interaçăo da Luz com tecidos biológicos – aplicaçőes. Mestrado Profissionalizante Lasers em Odontologia IPEN-FOUSP. Sao Paulo 2007.
  24. Ab-Rahman M.S., Hassan M.R.: Theory of cutoff temperature of operation of uncooled semiconductor laser diode. Eur. Phys. J. Appl. Phys. 2002, 50, 20301–20306.
  25. Ab-Rahman M.S., Hassan M.R.: Temperature-pattern dependence of initial carrier density of high-speed digitally modulated uncooled semiconductor laser diodes: Theoretical analysis. Conference, Electrical Engineering and Informatics. Selangor, 2009, 468–471.