Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.22
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2016, vol. 53, nr 3, July-September, p. 309–319

doi: 10.17219/dmp/62481

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

How Do Landmark Deviations Affect Angular Measurements? The Concept of Individual Cephalometric Calibration

Jak zmiana położenia punktów cefalometrycznych wpływa na wyniki pomiarów kątowych? Koncepcja indywidualnej kalibracji cefalometrycznej

Adam Jaworski1,A,B,C,D,E,F, Tomasz Smektała1,A,B,C,D,E,F, Marcin Królikowski2,A,C,F, Katarzyna Sporniak-Tutak1,A,E,F, Raphael Olszewski3,A,B,E,F

1 Department of Maxillofacial Surgery, Pomeranian Medical University, Szczecin, Poland

2 Institute of Manufacturing Engineering, West Pomeranian University of Technology. Szczecin. Poland

3 Oral and Maxillofacial Surgery Research Lab, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Belgium


Background. Cephalometr is an ancillary test that is widely used in orthodontics and maxillofacial surgery. Any cephalometric analysis is based on measurements performed between manually selected specific landmarks. Any inaccuracies in landmarks selection may bias the results of diagnosis, treatment planning or evaluation of craniofacial growth.
Objectives. The aim of this study was to identify the possible influence of linear landmark deviations on the X and Y axes on angular measurements, and to propose an individual cephalometric calibration concept to increase the landmark selection accuracy.
Material and Methods. A reference cephalometric template was created in GeoGebra software (International GeoGebra Institute, Linz, Austria). Based on the template, the values of the “S”, “N”, “ANS”, “A”, “B”, “Go”, “tgo”, “Pm”, and “Gn” cephalometric landmark locations were modified for 0.5 mm, 1 mm, 2 mm, 3 mm and 4 mm in each direction on the X and Y axis and angular changes were noted.
Results. For all angular measurements, a landmark selection error equal to or greater than 2 mm resulted in a change of more than 1 degree. Finally a four-step process of individual calibration was presented.
Conclusion. Depending on the landmark dislocation direction (horizontal or vertical), the angular measurements can be affected in either a minor or major way. Individual calibration allows for the detection of inaccuracies in the X and Y axis. Detailed analysis of the calibration results makes possible the correction of the selected errors, which could lead to more accurate measurements during cephalometric analysis and the detection of more subtle changes.

Key words

calibration, reproducibility of results, cephalometry

Słowa kluczowe

kalibracja, powtarzalność wyników, kefalometria

References (20)

  1. Xu Y., Yang C., Schreuder W.H., Shi J., Shi B., Zheng Q., Wang Y.: Cephalometric analysis of craniofacial morphology and growth in unrepaired isolated cleft palate patients. J. Craniomaxillofac. Surg. 2014, 42, 1853–1860.
  2. Contardo L., Ceschi M., Castaldo A., Denotti G., Di Lenarda R.: Differences in skeletal class II diagnosis using various cephalometric analyses. J. Clin. Orthod. 2008, 42, 389–392.
  3. Pae E.K., McKenna G.A., Sheehan T.J., Garcia R., Kuhlberg A., Nanda R.: Role of lateral cephalograms in assessing severity and difficulty of orthodontic cases. Am. J. Orthod. Dentofacial. Orthop. 2001, 120, 254–262.
  4. Durão A.R., Pittayapat P., Rockenbach M.I., Olszewski R., Ng S., Ferreira A.P., Jacobs R.: Validity of 2D lateral cephalometry in orthodontics: A systematic review. Prog. Orthod. 2013, 14, 31.
  5. Nijkamp P.G., Habets L.L., Aartman I.H., Zentner A.: The influence of cephalometrics on orthodontic treatment planning. Eur. J. Orthod. 2008, 30, 630–635.
  6. Durão A.R., Alqerban A., Ferreira A.P., Jacobs R.: Influence of lateral cephalometric radiography in orthodontic diagnosis and treatment planning. Angle Orthod. 2015, 85, 206–210.
  7. Keim R.G., Gottlieb E.L., Nelson A.H., Vogels D.S.: 2002 JCO study of orthodontic diagnosis and treatment procedures. Part 1. Results and trends. J. Clin. Orthod. 2002, 36, 553–568.
  8. Broadbent B.: A new X-ray technique and its application to orthodontia. Angle Orthod. 1931, 1, 45–66.
  9. Delaire J., Schendel S.A., Tulasne J.F.: An architectural and structural craniofacial analysis: A new lateral cephalometric analysis. Oral Surg. Oral Med. Oral Pathol. 1981, 52, 226–238.
  10. Downs W.B.: Variations in facial relationships; their significance in treatment and prognosis. Am. J. Orthod. 1948, 34, 812–840.
  11. McWilliam J.S.: Evaluation and calibration of X-Y-coordinatographs used in cephalometric analysis. Scand. J. Dent. Res. 1980, 88, 496–504.
  12. Uysal T., Baysal A., Yagci A.: Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur. J. Orthod. 2009, 31, 523–528.
  13. Delamare E.L., Liedke G.S., Vizzotto M.B., da Silveira H.L., Ribeiro J.L., Silveira H.E.: Influence of a programme of professional calibration in the variability of landmark identification using cone beam computed tomographysynthesized and conventional radiographic cephalograms. Dentomaxillofac. Radiol. 2010, 39, 414–423.
  14. Silveira H.L., Silveira H.E., Dalla-Bona R.R., Abdala D.D., Bertoldi R.F., von Wangenheim A.: Software system for calibrating examiners in cephalometric point identification. Am. J. Orthod. Dentofacial. Orthop. 2009, 135, 400–405.
  15. Leonardi R., Giordano D., Caltabiano M.: Interactive online program to improve cephalometric tracing skills. Am. J. Orthod. Dentofacial Orthop. 2004, 126, 256–258.
  16. Albarakati S.F., Kula K.S., Ghoneima A.A.: The reliability and reproducibility of cephalometric measurements: A comparison of conventional and digital methods. Dentomaxillofac. Radiol. 2012, 41, 11–17.
  17. Leonardi R., Giordano D., Maiorana F., Spampinato C.: Automatic cephalometric analysis. Angle Orthod. 2008, 78, 145–151.
  18. Olszewski R., Frison L., Wisniewski M., Denis J.M., Vynckier S., Cosnard G., Zech F., Reychler H.: Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography. Clin. Oral Investig. 2013, 17, 285–292.
  19. Fuyamada M., Nawa H., Shibata M., Yoshida K., Kise Y., Katsumata A., Ariji E., Goto S.: Reproducibility of landmark identification in the jaw and teeth on 3-dimensional cone-beam computed tomography images. Angle Orthod. 2011, 81, 843–849.
  20. Damstra J., Huddleston Slater J.J., Fourie Z., Ren Y.: Reliability and the smallest detectable differences of lateral cephalometric measurements. Am. J. Orthod. Dentofacial Orthop. 2010, 138, 546.e1–548.e8.