Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.5
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2015, vol. 52, nr 4, October-December, p. 485–490

doi: 10.17219/dmp/58819

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

A Comparison of Selected Regenerative Materials Used in the Management of Pulp Diseases – Review of the Literature

Porównanie wybranych materiałów regeneracyjnych stosowanych w leczeniu chorób miazgi zębów – przegląd piśmiennictwa

Dagmara Piesiak-Pańczyszyn1,A,B,C,D, Alina Wrzyszcz-Kowalczyk1,A,D,F, Joanna Kobierska-Brzoza1,B,D,E

1 Department of Conservative and Pediatric Dentistry, Wroclaw Medical University, Wrocław, Poland

Abstract

The authors present a group of regenerative materials recommended for the treatment of deep caries, pulp exposure, endodontic treatment of immature teeth involving apexogenesis and apexification, and management of internal resorption and chronic periapical inflammations. Biomaterials which demonstrate biocompatibility, expressed by direct integration with dentine on a molecular level, also stimulate the formation of secondary and reparative dentine by odontoblasts. Calcium hydroxide is the oldest and has been the most widely used biomaterial since the 19th century. However, due to some inconveniences experienced during treatment with this material, modern odontotropic materials like Mineral Trioxide Aggregate (MTA) or Biodentine are more frequently and more preferably used. New materials like MTA and Biodentine make it possible to develop new protocols of treatment and create opportunities for their successful results. Biodentine, in comparison with MTA, seems to be easier to prepare and apply, with a much shorter setting time. However it should be emphasized that observations of the performance of these new regenerative materials are relatively limited, so further research is required to confirm their long term performance and usefulness and to formulate reliable conclusions.

Key words

dental materials, MTA, Biodentine

Słowa kluczowe

materiały stomatologiczne, MTA, Biodentyna

References (38)

  1. Koliniotou-Koumpia E., Tziafas D.: Pulpal responses following direct pulp capping of healthy dog teeth with dentine adhesive systems. J. Dent. 2005, 33, 639–647.
  2. Andelin W.E., Shabahang S., Wright K., Torabinejad M.: Identification of hard tissue after experimental pulp capping using dentin sialoprotein (DSP) as a marker. J. Endod. 2003, 29, 646–650.
  3. Camilleri J., Montesin F.E., Papaioannou S., McDonald F., Pitt Ford T.R.: Biocompatibility of two commercial forms of mineral trioxide aggregate. Int. Endod. J. 2004, 37, 699–704.
  4. Laurent P., Camps J., About. I.: Biodentine TM induces TGF-b1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 2012, 45, 439–448.
  5. Tran X.V., Gorin C., Baroukh W.B., Pellat B., Decup F., Opsahl Vital S., Chaussain C., Boukpessi T.: Effect of a calcium-silicate-based restorative cement on pulp repair. J. Dent. Res. 2012, 91, 1166–1171.
  6. Piesiak-Pańczyszyn D., Pregiel B., Fita K.: Endodontic treatment of permanent teeth with incomplete root formation in the dependence from used material. Implantoprot. 2010, 11, 1, 38–43 [in Polish].
  7. Pietrzycka K., Pawlicka H.: Two appointments treatment of teeth with infected root canals and periapical inflammation using calcium hydroxide – status report. e-Dentico 2011, 29, 1, 76–84 [in Polish].
  8. Soares J., Santos S., Cesar C., Silva P., Sa M., Silveira F., Nunes E.: Calcium hydroxide induced apexification with apical root development: a clinical case report. Int. Endod. J. 2008, 41, 710–719.
  9. Postek-Stefańska L., Brzoza M., Kalacinska J.: The use of calcium hydroxide in dentistry – review of the literature. Stomatol. Współcz. 2004, 11, 2, 50–55 [in Polish].
  10. Pawińska M., Skrzydlewska E.: The release of calcium and hydroxide ions from calcium hydroxide preparates. Czas Stomatol. 2004, 47, 715–720 [in Polish].
  11. Rafter M.: Apexification – a review. Dent. Traumatol. 2005, 21, 1–8.
  12. Pietrzycka K.: Calcium hydroxide in treatment of infected root canals. Review of the literature. e-Dentico 2007, 13, 1, 78–81 [in Polish].
  13. Kierat A., Laszczyńska M., Kowalska E., Weyna E.: Comparison of the effect of mineral trioxide aggregate and calcium hydroxide in biological treatment of pulp of permanent teeth and in cell culture. Ann. Pomer. Med. Univ. 2010, 56, 2, 89–96 [in Polish].
  14. Kawamoto R., Kurokawa H., Takubo C., Shimamura Y., Yoshida T., Miyazaki M.: Change in elastic modulus of bovine dentine with exposure to a calcium hydroxide paste. J. Dent. 2008, 36, 959–964.
  15. Thomson A., Kahler B.: Regenerative endodontics – biologically-based treatment for immature permanent teeth: a case report and review of the literature. Aust. Dent. J. 2010, 55, 446–452.
  16. Camilleri J., Sorrentino F., Damidot D.: Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 2013, 29, 580–599.
  17. Wilkoński W., Kwapińska H., Jamróz-Wilkońska L., Mendel P., Suchodolski Ł., Krupiński J., Opiła J.: Comparison of sealing ability of Grey MTA Angelus, Tech Biosealer Apex and Biodentine in permanent teeth with incomplete root formation. Magazyn Stomatol. 2012, 22, 7–8, 90–95 [in Polish].
  18. Ćwiklak K., Szczepańska J.: The use of MTA in permanent teeth with incomplete root formation – review of the literature. Nowa Stomatol. 2012, 17, 1, 19–23 [in Polish].
  19. Łuczaj-Cepowicz E., Marczuk-Kolada G., Waszkiel D.: The possibilities of clinical application of new material mineral trioxide aggregate (MTA) – review of the literature. Nowa Stomatol. 2006, 11, 4, 165–169 [in Polish].
  20. Hilt A., Szydłowska-Walendowska B.: Indirect pulp capping in permanent teeth using MTA in patients of developmental age. e-Dentico 2011, 29, 1, 86–93 [in Polish].
  21. Asgary S., Parirokh M., Eghbal M.J., Brink F.: Chemical differences between white and grey mineral trioxide aggregate. J. Endod. 2005, 31, 101–104.
  22. Mente J.: Mineral Trioxide Aggregate. Indication and practical application on the basis of specific cases. Endodoncja. pl 2009, 4, 229–241 [in Polish].
  23. Simon S., Rilliard F., Berdal A., Machtou P.: The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int. Endod. J. 2007, 40, 186–197.
  24. Yildirim T., Er K., Taşdemir T., Tahan E., Buruk K., Serper A.: Effect of smear layer and root-end cavity thickness on apical sealing ability of MTA as a root-end filling material: A bacterial leakage study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 109, 67–72.
  25. Staszczyk M., Wróblewska M., Zarzecka J.: Use of regenerative endodotics in treatment of permanent teeth with incomplete roots – review of the literature. Poradnik Stomatol. 2011, 8, 300–303 [in Polish].
  26. Reyes-Carmona J.F, Santos A.R.S, Figueiredo C.P, Felippe M.S, Felippe W.T, Cordeiro M.M.: In vivo host interactions with mineral trioxide aggregate and calcium hydroxide: inflammatory molecular signaling assessment. J. Endod. 2011, 37, 1225–1235.
  27. Lipski M., Nowicka A., Górski M., Dura W., Lichota D.: Comparison of sealing ability of MTA and Biodentine used to reverse filling of root canals. Magazyn Stomatol. 2012, 22, 6, 82–85 [in Polish].
  28. Czarnecka B., Coleman N.J., Shaw H., Nicholson J.W.: The use of mineral trioxide aggregate in endodontics – status report. Dent. Med. Probl. 2008, 45, 5–11 [in Polish].
  29. Ferk S., Simeon P., Matijevic J.: Antibacterial effect of mineral trioxide aggregate and amalgam. Acta Stomatol. Croat. 2011, 45, 8–12.
  30. Al-Kahtani A., Shostad S., Schifferle R., Bhambhani S.: In vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices. J. Endod. 2005, 31, 117–119.
  31. Grech I., Mallia B., Camilleri J.: Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent. Mater. 2013, 29, 20–28.
  32. Camilleri J., Kralj P., Veber M., Sinagra E.: Characterization and analysis of acid extractable and leached trace elements in dental cements. Int. Endod. J. 2012, 45, 737–743.
  33. Bakapoulou A., About I.: Biodentine, a promising bioactive material for the preservation of pulp vitality in restorative dentistry. Case Studies Collection Septodont. 2013, 5, 4–10.
  34. Koubi G., Colon P., Franquin J.C., Hartmann A., Richard G., Faure M.O., Lambert G.Ł.: Clinical evaluation of the performance and safety of a new dentine substitute Biodentine in the restoration of posterior teeth. A prospective study. Clin. Oral Investig. 2013, 17, 243–249.
  35. Nowicka A., Lipski M., Postek-Stefańska L., Wysoczańska-Jankowicz I., Lichota D., Sporniak-Tutak K., Buczkowska-Radlińska J.: Indirect pulp capping in permanent teeth using Biodentine. Magazyn Stomatol. 2012, 22, 4, 30–37 [in Polish].
  36. Dammaschke T.: Biodentin a new bioactive cement for direct pulp capping. Case Studies Collection, 2012, 1, 4–8.
  37. Raskin A., Eschrich G., Dejou J., About I.: In vitro microleakage of Biodentine as a dentin substitute compared to Fuji IILC in cervical lining restorations. J. Adhesive Dent. 2012, 14, 535–541.
  38. Firla M.T.: Direct pulp capping with a bioactive dentine substitute. Case Studies Collection, 2012, 1, 17–21.