Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.5
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2014, vol. 51, nr 2, April-June, p. 231–246

Publication type: review article

Language: English

Creative Commons BY-NC-ND 3.0 Open Access

3D Diagnostics in Orthodontics and Orthognathic Surgery – Achievements, Limitations, Expectations

Diagnostyka 3D w ortodoncji i chirurgii ortognatycznej – osiągnięcia, ograniczenia, wyzwania

Adrian Strzecki1,A,B,C,D, Sławomir Miechowicz2,C,E,F, Elżbieta Pawłowska1,A,E,F

1 Department of Orthodontics, Medical University of Lodz, Łódź, Poland

2 Chair of Machine Design, Mechanical Engineering and Aeronautics Department, University of Technology, Rzeszow University of Technology, Rzeszów, Poland

Abstract

3D diagnostic techniques based on 3-dimensional digital models of patients’ tissues are becoming an increasingly important part of orthodontic and orthognathic treatment planning. Modern methods of visualization concerning dentofacial skeleton, soft tissues and dental arches can be considered an answer to the clinicians’ needs and lead to the creation of 3D orthodontic diagnostics. Techniques of converting anatomic data into a 3-dimensional model and fusing tissue models into one complete “virtual head” composite model could influence the case management improving both treatment planning and doctor-patient interaction. However, such new possibilities and increasing amount of diagnostic data require clinicians to master new sets of skills, including operating specialized software and complex interpretations of a vastly expanded amount of diagnostic data.

Streszczenie

Trójwymiarowa diagnostyka ortodontyczna wykorzystując do oceny przypadku modele 3D tkanek pacjenta, zdobywa coraz większe znaczenie w ortodoncji oraz chirurgii ortognatycznej. Nowoczesne metody wizualizacji szkieletu twarzoczaszki, łuków zębowych oraz konturu tkanek miękkich odpowiadają potrzebom ortodontycznej diagnostyki 3D, oferując możliwość łączenia poszczególnych zestawów danych w kompletną „wirtualną głowę” pacjenta. Tak uzyskany złożony model 3D może znaleźć zastosowanie na etapie prezentacji przypadku oraz planowania leczenia, dając klinicystom możliwość realistycznej oceny stosunków anatomicznych oraz zindywidualizowania postępowania terapeutycznego. Zwiększająca się liczba danych z badań obrazowych wiąże się jednak z koniecznością opanowania nowych umiejętności ich właściwej interpretacji oraz obsługi specjalistycznego oprogramowania.

Key words

digital imaging, 3D orthodontic diagnostics, computed tomography, image fusion

Słowa kluczowe

cyfrowe badania obrazowe, diagnostyka ortodontyczna 3D, tomografia komputerowa, fuzja technik obrazowania

References (76)

  1. Lane C., Harrell W. Jr: Completing the 3-dimensional picture. Am. J. Orthod. Dentofacial Orthop. 2008, 133, 612–620.
  2. Plooij J.M., Maal T.J., Haers P., Borstlap W.A., Kuijpers-Jagtman A.M., Bergé S.J.: Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. J. Oral Maxillofac. Surg. 2011, 40, 341–352.
  3. Scolozzi P., Schendel S.: Soft-tissue changes and predictions of orthognathic surgery. In: Oral and Maxillofacial Surgery. Eds.: Fonseca R., Elsevier, St. Louis 2009, 372–381.
  4. Baum U., Greess H., Lell M., Nömayr A., Lenz M.: Imaging of head and neck tumors-methods: CT, spiral-CT, multislice-spiral-CT. Eur. J. Radiol. 2000, 33, 153–160.
  5. Damadian R., Minkoff L., Goldsmith M., Stanford M., Koutcher J.: Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal. Science 1976, 194, 1430–1432.
  6. Goto T.K., Nishida S., Nakamura Y., Tokumori K., Nakamura Y., Kobayashi K., Yoshida Y., Yoshiura K.: The accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 550–559.
  7. Schendel S., Lane C.: 3D orthognathic surgery simulation using image fusion. Sem. Orthodont. 2009, 15, 48–56.
  8. Halazonetis D.J.: From 2-dimensional cephalograms to 3-dimensional computed tomography scans. Am. J. Orthod. Dentofacial. Orthop. 2005, 127, 627–637.
  9. Grauer D., Cevidanes L.S., Proffit W.R.: Working with DICOM craniofacial images. Am. J. Orthod. Dentofacial. Orthop. 2009, 136, 460–470.
  10. Scarfe C.W., Farman A.G.: What is cone-beam CT and how does it work? Dent. Clin. N. Am. 2008, 52, 707–730.
  11. Velders X.L., Van der Stelt P.F.: Absorbed dose to the parotid glands: spiral CT versus conventional tomographic examinations. In: Advances in maxillofacial imaging. Eds.: Farman A.G., Ruprecht A., Gibbs S.I., Scarfe W.C., Elsevier Science B.V., Amsterdam 1997, 407–412.
  12. Christiansen E.L., Moore R.J., Thompson J.R., Hasso A.N., Hinshaw D.B. Jr: Radiation dose in radiography, CT, and arthrography of the temporomandibular joint. AJR Am. J. Roentgenol. 1987, 148, 107–109.
  13. Robb R.A.: The Dynamic Spatial Reconstructor: An X-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE Trans. Med. Imag. 1982, 1, 22–33.
  14. Mah J.K., Danforth R.A., Bumann A., Hatcher D.: Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 96, 508–513.
  15. Ludlow J.B., Davies-Ludlow L.E., Brooks S.L.: Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac. Radiol. 2003, 32, 229–234.
  16. Tsiklakis K., Donta C., Gavala S., Karayianni K., Kamenopoulou V., Hourdakis C.J.: Dose reduction in maxillofacial imaging using low dose cone beam CT. Eur. J. Radiol. 2005, 56, 413–417.
  17. Moorrees C.F.: Natural head position – a revival. Am. J. Orthod. Dentofacial. Orthop. 1994, 105, 512–513.
  18. Siewerdsen J.H., Jaffray D.A.: Cone-beam computed tomography with a flat-panel imager: effects of image lag. Med. Phys. 1999, 26, 2635–2647.
  19. Tam K.C., Samarasekera S., Sauer F.: Exact cone beam CT with a spiral scan. Phys. Med. Biol. 1998, 43, 1015–1024.
  20. Tyndall D.A., Price J.B., Tetradis S., Ganz S.D., Hildebolt C., Scarfe W.C.: Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 817–826.
  21. Farman A.G., Scarfe W.C.: The basics of maxillofacial cone beam computed tomography. Sem. Orthodont. 2009, 15, 2–13.
  22. Rosslyn V.A.: DICOM digital imaging and communications in medicine. National Electrical Manufacturers Association (NEMA) 2008.
  23. Cevidanes L.H., Styner M.A., Proffit W.R.: Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am. J. Orthod. Dentofacial. Orthop. 2006, 129, 611–618.
  24. Cattaneo P.M., Bloch C.B., Calmar D., Hjortshøj M., Melsen B.: Comparison between conventional and conebeam computed tomography-generated cephalograms. Am. J. Orthod. Dentofacial. Orthop. 2008, 134, 798–802.
  25. Kumar V., Ludlow J.B., Mol A., Cevidanes L.: Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac. Radiol. 2007, 36, 263–269.
  26. Moshiri M., Scarfe W.C., Hilgers M.L., Scheetz J.P., Silveira A.M., Farman A.G.: Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am. J. Orthod. Dentofacial. Orthop. 2007, 132, 550–560.
  27. Van Vlijmen O.J., Bergé S.J., Swennen G.R., Bronkhorst E.M., Katsaros C., Kuijpers-Jagtman A.M.: Comparison of cephalometric radiographs obtained from cone-beam computed tomography scans and conventional radiographs. J. Oral Maxillofac. Surg. 2009, 67, 92–97.
  28. Lagravère M.O., Carey J., Ben-Zvi M., Packota G.V., Major P.W.: Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit. Dentomaxillofac. Radiol. 2008, 37, 305–308.
  29. Vannier M.W.: Craniofacial computed tomography scanning: technology, applications and future trends. Orthod. Craniofac. Res. 2003, 6, 179–182.
  30. Swennen G.R., Schutyser F.: Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am. J. Orthod. Dentofacial. Orthop. 2006, 130, 410–416.
  31. Ballrick J.W., Palomo J.M., Ruch E., Amberman B.D., Hans M.G.: Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am. J. Orthod. Dentofacial. Orthop. 2008, 134, 573–582.
  32. Lascala C.A., Panella J., Marques M.M.: Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac. Radiol. 2004, 33, 291–294.
  33. Björk A.: Sutural growth of the upper face studied by the implant method. Acta. Odontol. Scand. 1966, 24, 109–127.
  34. Björk A., Skieller V.: Facial development and tooth eruption. An implant study at the age of puberty. Am. J. Orthod. 1972, 62, 339–383.
  35. White S.C., Rose T.C.: Absorbed bone marrow dose in certain dental radiographic techniques. J. Am. Dent. Assoc. 1979, 98, 553–558.
  36. BouSerhal C., van Steenberghe D., Bosmans H., Sanderink G.C., Quirynen M., Jacobs R.: Organ radiation dose assessment for conventional spiral tomography: a human cadaver study. Clin. Oral Implants. Res. 2001, 12, 85–90.
  37. Dicker G.J., van Spronsen P.H., van Ginkel F.C., Castelijns J.A., van Schijndel R.A., Boom H.P., Tuinzing D.B.: Adaptation of lateral pterygoid and anterior digastric muscles after surgical mandibular advancement procedures in different vertical craniofacial types: a magnetic resonance imaging study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 688–697.
  38. Schutyser F., Swennen G., Suetens P.: Robust visualization of the dental occlusion by a double scan procedure. Med. Image Comput. Comput. Assist. Interv. 2005, 8, 368–374.
  39. Rangel F.A., Maal T.J., Bergé S.J., van Vlijmen O.J., Plooij J.M., Schutyser F., Kuijpers-Jagtman A.M.: Integration of digital dental casts in 3-dimensional facial photographs. Am. J. Orthod. Dentofacial. Orthop. 2008, 134, 820–826.
  40. Angle E.H.: Malocclusion of the teeth. Philadelphia: S.S. White Dental Mfg. Co. 1907.
  41. Sarver D.M.: Esthetic orthodontics and orthognathic surgery. Mosby, St Louis 1998.
  42. Holdaway R.A.: A soft-tissue cephalometric analysis and its use in orthodontic treatment planning. Part I. Am. J. Orthod. 1983, 84, 1–28.
  43. Halazonetis D.J.: Acquisition of 3-dimensional shapes from images. Am. J. Orthod. Dentofacial. Orthop. 2001, 119, 556–560.
  44. Swennen G.R., Mollemans W., Schutyser F.: Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. J. Oral. Maxillofac. Surg. 2009, 67, 2080–2092.
  45. Xia J., Samman N., Yeung R.W., Wang D., Shen S.G., Ip H.H., Tideman H.: Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction. Int. J. Oral Maxillofac. Surg. 2000, 29, 250–258.
  46. Hell B., Walter F.A., Schreiber S., Blase H., Bielke G., Meindl S., Stein G.: Three-dimensional ultrasonography in maxillofacial surgery. A new diagnostic tool. Int. J. Oral Maxillofac. Surg. 1993, 22, 173–177.
  47. Kaplan H.M.: A pioneer in 3-D technology for medical imaging: 3DMD. Technol Commercial Alliance 2003, 70–82.
  48. Kusnoto B., Evans C.A.: Reliability of a 3D surface laser scanner for orthodontic applications. Am. J. Orthod. Dentofacial. Orthop. 2002, 122, 342–348.
  49. Marmulla R., Hassfeld S., Lüth T., Mühling J.: Laser-scan-based navigation in cranio-maxillofacial surgery. J. Craniomaxillofac. Surg. 2003, 31, 267–277.
  50. Kau C.H., Richmond S., Zhurov A.I., Knox J., Chestnutt I., Hartles F., Playle R.: Reliability of measuring facial morphology with a 3-dimensional laser scanning system. Am. J. Orthod. Dentofacial. Orthop. 2005, 128, 424–430.
  51. Hennessy R.J., McLearie S., Kinsella A., Waddington J.L.: Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral – craniofacial morphogenesis and cognitive function. J. Anat. 2005, 207, 283–295.
  52. Hajeer M.Y., Ayoub A.F., Millett D.T., Bock M., Siebert J.P.: Three-dimensional imaging in orthognathic surgery: the clinical application of a new method. Int. J. Adult Orthodon. Orthognath. Surg. 2002, 17, 318–330.
  53. Fourie Z., Damstra J., Gerrits P.O., Ren Y.: Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems. Forensic. Sci. Int. 2011, 15, 127–134.
  54. Ghoddousi H., Edler R., Haers P., Wertheim D., Greenhill D.: Comparison of three methods of facial measurement. Int. J. Oral Maxillofac. Surg. 2007, 36, 250–258.
  55. Kohn L.A., Cheverud J.M., Bhatia G., Commean P., Smith K., Vannier M.W.: Anthropometric optical surface imaging system repeatability, precision, and validation. Ann. Plast. Surg. 1995, 34, 362–371.
  56. Kau C.H., Richmond S.: Three-dimensional analysis of facial morphology surface changes in untreated children from 12 to 14 years of age. Am. J. Orthod. Dentofacial. Orthop. 2008, 134, 751–760.
  57. Baik H.S., Lee H.J., Lee K.J.: A proposal for soft tissue landmarks for craniofacial analysis using 3-dimensional laser scan imaging. World J. Orthod. 2006, 7, 7–14.
  58. Yamada T., Mori Y., Minami K., Mishima K., Tsukamoto Y.: Three-dimensional analysis of facial morphology in normal Japanese children as control data for cleft surgery. Cleft Palate Craniofac. J. 2002, 39, 517–526.
  59. Swennen G.R., Mollemans W., De Clercq C., Abeloos J., Lamoral P., Lippens F., Neyt N., Casselman J., Schutyser F.: A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J. Craniofac. Surg. 2009, 20, 297–307.
  60. Gateno J., Xia J.J., Teichgraeber J.F., Christensen A.M., Lemoine J.J., Liebschner M.A., Gliddon M.J., Briggs M.E.: Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex craniomaxillofacial deformities. J. Oral. Maxillofac. Surg. 2007, 65, 728–734.
  61. Schutyser F., Swennen G., Suetens P.: Robust visualization of the dental occlusion by a double scan procedure. Med. Image. Comput. Comput. Assist. Interv. 2005, 8, 368–374.
  62. Swennen G.R., Mommaerts M.Y., Abeloos J., De Clercq C., Lamoral P., Neyt N., Casselman J., Schutyser F.: A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface. Int. J. Oral Maxillofac. Surg. 2009, 38, 48–57.
  63. Gateno J., Teichgraeber J.F., Xia J.J.: Three-dimensional surgical planning for maxillary and midface distraction osteogenesis. J. Craniofac. Surg. 2003, 14, 833–839.
  64. Swennen G.R., Barth E.L., Eulzer C., Schutyser F.: The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int. J. Oral Maxillofac. Surg. 2007, 36, 146–152.
  65. Swennen G.R., Mommaerts M.Y., Abeloos J., De Clercq C., Lamoral P., Neyt N., Casselman J., Schutyser F.: The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model. J. Craniofac. Surg. 2007, 18, 533–539.
  66. Uechi J., Okayama M., Shibata T., Muguruma T., Hayashi K., Endo K., Mizoguchi I.: A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am. J. Orthod. Dentofacial. Orthop. 2006, 130, 786–798.
  67. Nkenke E., Zachow S., Benz M., Maier T., Veit K., Kramer M., Benz S., Häusler G., Neukam F.W., Lell M.: Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dentomaxillofac. Radiol. 2004, 33, 226–232.
  68. Hajeer M.Y., Millett D.T., Ayoub A.F., Siebert J.P.: Applications of 3D imaging in orthodontics: part I. J. Orthod. 2004, 31, 62–70.
  69. Ayoub A.F., Wray D., Moos K.F., Siebert P., Jin J., Niblett T.B., Urquhart C., Mowforth R.: Three-dimensional modeling for modern diagnosis and planning in maxillofacial surgery. Int. J. Adult Orthodon. Orthognath. Surg. 1996, 11, 225–233.
  70. Swennen G.R.J., Schutyser F.A.C., Hausamen J.E.: Three-dimensional cephalometry. A color atlas and manual. Springer, Berlin/Heidelberg 2005, 320.
  71. Hajeer M.Y., Ayoub A.F., Millett D.T.: Three-dimensional assessment of facial soft-tissue asymmetry before and after orthognathic surgery. Br. J. Oral Maxillofac. Surg. 2004, 42, 396–404.
  72. Groeve P.D., Schutyser F., Cleynenbreugel J.V., Suetens P.: Registration of 3D photographs with spiral CT images for soft tissue simulation in maxillofacial surgery. Lect. Notes Comput. Sci. 2001, 2208, 991–996.
  73. Hajeer M.Y., Mao Z., Millett D.T., Ayoub A.F., Siebert J.P.: A new three-dimensional method of assessing facial volumetric changes after orthognathic treatment. Cleft Palate Craniofac. J. 2005, 42, 113–120.
  74. McCance A.M., Moss J.P., Fright W.R., Linney A.D.: Three-dimensional analysis techniques. Part 3: Color-coded system for three-dimensional measurement of bone and ratio of soft tissue to bone: the analysis. Cleft Palate Craniofac. J. 1997, 34, 52–57.
  75. Nkenke E., Langer A., Laboureux X., Benz M., Maier T., Kramer M., Häusler G., Kessler P., Wiltfang J., Neukam F.W.: Validation of in vivo assessment of facial soft-tissue volume changes and clinical application in midfacial distraction: a technical report. Plast. Reconstr. Surg. 2003, 112, 367–380.
  76. Plooij J.M., Swennen G.R., Rangel F.A., Maal T.J., Schutyser F.A., Bronkhorst E.M., Kuijpers-Jagtman A.M., Bergé S.J.: Evaluation of reproducibility and reliability of 3D soft tissue analysis using 3D stereophotogrammetry. Int. J. Oral Maxillofac. Surg. 2009, 38, 267–273.