Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2020) – 128.41
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI – 0.5
Average rejection rate (2021) – 81.35%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2013, vol. 50, nr 1, January-March, p. 71–77

Publication type: review article

Language: English

Photopolymerization of Dental Composites – Light Source and Light Intensity Dependent Technique

Fotopolimeryzacja materiałów złożonych – technika zależna od źródła światła i jego natężenia

Elżbieta Jodkowska1,A,D,E, Monika Skoczylas1,E,F

1 Department of Conservative Dentistry, Medical University of Warsaw, Poland

Abstract

The paper reviews the current literature concerning the available light sources used for dental composite polymerization. Among the available curing devices the most popular are halogen lamps, plasma lamps, diode based lamps (LED) and argon lasers. Each of these groups is characterized by distinct quality of light, which determines the correct course of curing of composite materials. The paper discusses advantages and disadvantages of devices representing all groups of lamps.

Streszczenie

Proces utwardzania światłem zrewolucjonizował stomatologię w sensie praktycznym i naukowym. Z wyjątkiem procedury łączenia, prawdopodobnie nie istnieje żadna inna procedura, która sprzyjałaby coraz łatwiejszemu, wydajniejszemu i bardziej produktywnemu działaniu z zakresu stomatologii praktycznej. Jak większość znaczących osiągnięć w tej dziedzinie, stale udoskonalana technika stosowania procedury utwardzania światłem w stomatologii była rezultatem nowatorskich zastosowań wdrażanych do procesu leczenia klinicznego. W pracy na podstawie piśmiennictwa przedstawiono informacje o podstawowych źródłach światła stosowanych w stomatologii do polimeryzacji materiałów złożonych. Opierając się na badaniach nad kinetyką skurczu polimeryzacyjnego lampą, stosowano lampy polimeryzacyjne, które należy podzielić na 4 grupy – lampy halogenowe, ksenonowe, półprzewodnikowe i lasery argonowe. Każda z tych grup ma charakterystyczne właściwości dotyczące jakości emitowanego światła, warunkujące poprawny przebieg utwardzania materiału złożonego. Skuteczność polimeryzacji zachodzącej w materiale światłoutwardzalnym zależy m.in. od częstotliwości i intensywności użytego światła. Największy procent spolimeryzowanych cząsteczek monomeru powstaje przy długości światła 450–490 nm, osiągając maksimum pracy przy 468 nm. W artykule opisano zalety i wady urządzeń reprezentujących wymienione grupy.

Key words

photopolymerization, light-cured composites, halogen, plasma, LED, argon curing light

Słowa kluczowe

proces fotopolimeryzacji, światłoutwardzalne materiały złożone, lampy halogenowe, plazmowe, diodowe, argonowe

References (47)

  1. Kilian R.J.: Visible light cured composite. Dependence of cure on light intensity. J. Dent. Res. 1979, 58, 243–250.
  2. Fujisawa S ., Kadoma Y., Masuhara E .: Efects of photoinitiators for the visible-light resin system on hemolysis of dog erythrocytes and lipid peroxidation of their components. J. Dent. Res. 1986, 65, 1186–1190.
  3. Sun G.J, Chae K.H.: Properties of 2,3-butanedione and 1-phenyl-1,2 propanedione as new photosensitizers for visible light cured dental resin composites. Polymer. 2000, 41, 6205–6212.
  4. Weinman W ., Thalacker C., Guggenberger R.: Siloranes in dental composites. Dent. Mater. 2005, 21, 68–74.
  5. Shin D.H., Rawis R.H.: Degree of conversion and colour stability of the light curring resin with new photoinicjator systems. Dent. Mater. 2009, 25, 1030–1038.
  6. Leprince J.G., Hadis M., Shortall A.C., Ferracane J.L., Devaus J., Leloup G., Palin W .M.: Photoinicjator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent. Mater. 2011, 27, 157–164.
  7. Ilie N., Hickel R.: Can CQ be completely replaced by alternative initiators in dental adhesives. Dent. Mater. J. 2008, 27, 221–228.
  8. Hadis M.A., Shortall A.C., Palin W .H.: Competitive light absorbers in photoactive dental resin-based materials. Dent. Mater. 2012, 28, 831–841.
  9. Mills R.W., Jandt K.D., Ashworth S .H.: Dental composite depth of cure with halogen and blue light emitting diode technology. Brit. Dent. J. 1999, 186, 388–391.
  10. Shorthall A., Harrigton E .: Guidelines for the selection, use maintenance of visible light activation units. Brit. Dent. J. 1996, 180, 383–387.
  11. Pilo R., Oelgiesser D., Cardash H.S.: A survey of output intensity and potential depth of cure among light curing units in clinical use. J. Dent. 1999, 27, 235–241.
  12. Małkiewicz K., Jodkowska E .: Light curing units used in the modern dentistry-the review of the literature. Stomat. Współczesna 2003, Suppl. 2, 25–30.
  13. Miyazaki M., Hattori T., Ichiishi Y., Kondo M., Onose H., Moore B.K. : Evaluation of curing units used in private dental office. Oper. Dent., 1999, 23, 50–54.
  14. Rueggeberg F.: Contemporary issues in photocuring. Comp. Cont. Educ. Dent. 1999, 20, Suppl. 25, S4–15.
  15. Bachanek T., Drop B., Niewczas A., Chałas R.: Evaluation of properties plasma arc lights. Quintessence 2000, 3, 155–160.
  16. Oesterle L., Newman S ., Shellhart W .: Rapid curing of bonding composite with a xenon plasma arc light. Am. J. Ortod. 2001, 119, 610–616.
  17. Hasegawa T., Itoh K., Yukitani W ., Wakumoto S ., Hisamitsu H.: Depth of cure and marginal adaptation to dentin of xenon lamp polymerized resin composites. Oper. Dent. 2001, 26, 585–590.
  18. Unterbrink G.L., Muessner R.: Influence of light intensity on two restorative systems. J. Dent. 1995, 23, 183–189.
  19. Davidson-Kaban S .S., Davidson C.L., Feilzer A., de Gee A., Erdilek N.: The effect of curring light variations on bulk curing and vall-to-wall quality of to types and various shades of resin composites. Dent. Mater. 1997, 13, 344–352.
  20. Peutzfeld A., Sahafi A., Asmussen E .: Characterization of resin composites polymerized with plasma are curing units. Dent. Mater. 2000, 16, 330–336.
  21. Friedman J., Inventor Demetron Research Corp. Danbury, CT, assignee; Dental fibre optic light bundle with Uniform Taper United States Patent 1994, 5, 371, 826.
  22. Congress bans incandescent, bulbs. World Net Daily, 2007 [cited 2010 August 10] Available from; http:/www/wnd. com/?pageld=45156.
  23. Mehl A., Hickel R., Kunzelman K.H.: Physical properties and gap formation of light-cured composites with and without “softstart-polymerization”. J. Dent. 1997, 25, 321–330.
  24. Hofmann N., Markert T., Hugo B., Klaiber B.: Effect of high intensity vs soft start halogen irradiation on light-cured resin-based composites Part 1. Temperature rise and polymerization shrinkage. Am. J. Dent. 2003, 16, 421–430.
  25. Hofmann N., Siebrecht C., Hugo B., Klaiber B.: Influence of curing methods and materials on the marginal seal of class V composite restorations in vitro. Oper. Dent. 2003, 28, 160–167.
  26. Amaral C.M., de Castro A.K., Pimenta L.A., Ambrosano G.M.: Influence of resin composite polymerization techniques on microleakage and microhardness. Quintes. Int. 2002, 33, 685–689.
  27. Amaral C.M., Peris A.R., Ambrosano G.M., Pimenta L.A.: Microleakage and gap formation of resin composite restorations polymerized with different techniques. Am. J. Dent. 2004, 17, 156–160.
  28. Bouschlicher M.R., Rueggeberg F.A., Boyer D.B.: Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite. J. Esthet. Dent. 2000, 12, 23–32.
  29. Algera T.J.: The influence of slow-start polymerization on the shrinkage stress development. J. Dent. Res. 1998, 77, 82–85.
  30. Yap A.V., Soh M.S., Siow K.S: Post-gel shrinkage with pulse activation and soft-start polymerization. Oper. Dent. 2002, 27, 44–49.
  31. Hackman S .T., Pohjola R.M., Rueggeberg F.A.: Depths of cure and effect of shade using pulse delay and continuous exposure photo-curing techniques. Oper. Dent. 2002, 27, 593–599.
  32. Yap A.V., Soh M.S., SiowK.S.: Effectiveness of composite cure with activation and soft-start polymerization. Oper. Dent. 2002, 27, 44–49.
  33. Sakaguchi R.L., Berge H.X.: Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J. Dent. 1998, 26, 695–700.
  34. Bouschlicher M.R., Rueggeberg F.A., Boyer D.B.:Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite. J. Esthet. Dent. 2000, 12, 23–32.
  35. Emami N., Soderholm K.J., Berglund L.A: Effect of light power density variations on bulk curing properties of dental composites. J. Dent. 2003, 31, 189–196.
  36. Hofman N., Denner W ., Hugo B., Klaiber B.: The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J. Dent. 2003, 31, 383–393.
  37. Gemunder E., Chi H.J.: Inventors. Air Techniques Inc., Hicksville NY assignee. Photo curing light-system having modulated light intensity control Patent 6, 522, 086, 2003.
  38. Krames M.: Light emitting diode technology for solid-state lighting In: National academy of engineering VS frontiers of engineering symposium 2009.
  39. Craford M., Holonyak N., Kish F.: In pursuit of the ultimate lamp. Sci. Am. 2001, 284, 62–67.
  40. Stahl F., Ashworth S .H., Jandt K.D., Mills R.W.: Light-emitting diode (LED) polymerization of dental composites: flexural properties and polymerization potential. Biomat. 2000, 21, 1379–1385.
  41. Rueggeberg F.A., Blalock J.S., Callan R.S.: LED curing lights-what`s new? Cont. Educ. Dent. 2005, 26, 581–590.
  42. Boutoussov D., Cozean C., Inventors PLS Liquidating LLC, Aliso Viejo CA assignee. Optical Source and Method United States Patent 2002, 6, 439, 888 B1.
  43. Shortall A.C.: How light source and product shade influence cure depth for a contemporary composite. J. Oral Rehabil. 2005, 32, 906–911.
  44. Uhl A., Sigusch B.W., Jandt K.D.: Second generation LEDs for the polymerization of oral biomaterials. Dent. Mater. 2004, 20, 80–87.
  45. Cao D., Inventor, Cao Group, Inc assignee Light for use in activating light-activated materials, the light having a plurality of light emitting semiconductor chips emitting light of differing peak wavelengths to provide a wide light spectrum profile United States Patent VS 2002/0190659A1, 2002.
  46. Powell G., Kelsey W ., Blankenau R.: The use of an argon laser for polymerization of composite resin. Esth. Dent. 1989, 1, 34–37.
  47. Powell G., Blankenau R.: Laser curring of dental material. Dent. Clin. North. Am. 2000, 44, 923–930.