Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2021) – 132.50
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI (2021) – 0.5
Average rejection rate (2022) – 79.69%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2011, vol. 48, nr 3, July-September, p. 380–387

Publication type: original article

Language: English

Mechanical Properties of Poured Aramid Fiber Reinforced Acrylic Resin Depending on Fiber Quantity, Fiber Position and Different Wetting Agents

Właściwości mechaniczne wlewowej żywicy akrylowej wzmocnionej włóknem aramidowym w zależności od liczby i położenia włókien oraz różnych czynników wiążących

Zbigniew Raszewski1,, Danuta Nowakowska2,

1 Zhermapol Poland, Warsaw

2 Division of Dental Materials, Department of Dental Prosthetics, Wroclaw Medical University, Poland

Abstract

Background. Acrylic resin used in restorative dentistry is the most popular denture base material. However due to its limited mechanical properties, different methods to reinforce are required.
Objectives. To investigate the effect of various quantities and position of aramid fibers (AF) covered by different bifunctional acrylic monomers on the flexural properties of cold couring acrylic resin (AR) suitable for the pouring method.
Material and Methods. Colacryl TS 2027® (Lucite) denture base test specimens were reinforced with various quantity unidirectional aramid fibers Tawaron® (Teijin) in different position in the samples. The fibres surface was pretreated with methacrylic polymer solution alone and with combinations of methacrylic monomers (Bis GMA, UDMA, methacrylic oligomer with polycarboxylic acid group). Control specimens were not fiber reinforced. Flexural properties of aramid fibers reinforced acrylic resins (AFRAR) were determined in dry condition after 24 hours at 23º ± 1ºC and after 7 day water immersion at 37º ± 1ºC. The test was performed by a three-point bending test using Instron type 4411 tensile testing machine.
Results. Flexural resistance of the aramid fiber reinforced acrylic resin (AFRAR) grew with a increasing number of fiber bundle in the sample. Positioning of fibers in the opposite direction to the breaking force effectively increased the flexural strength. Best results were obtained with Bis GMA methacrylic monomer which is a good cross linking agent for AF.
Conclusion. Unidirectional AF with methacrylic polyfunctional monomers pretreated surface, may find application in restorative dentistry for the purpose of increasing the mechanical properties of poured acrylic resins used as denture base material.

Streszczenie

Wprowadzenie. Tworzywo akrylowe stosowane w stomatologii odtwórczej, jako najbardziej popularny materiał do wykonania protez ruchomych, wykazuje ograniczoną wytrzymałość mechaniczną i dlatego proponuje się różne metody jego wzmocnienia.
Cel pracy. Określenie wpływu liczby oraz położenia włókna aramidowego (AF) zwilżonego różnymi środkami łączącymi na właściwości mechaniczne wlewowej żywicy akrylowej (AR).
Materiał i metody. Próbki z żywicy akrylowej Colacryl TS 2027® (Lucite) wzmocniono jednokierunkowym włóknem aramidowym Tawaron® (Teijin), które umieszczano w górnej i dolnej części próbek, wielokierunkowo oraz pionowo. Włókno było wcześniej zwilżone różnymi czynnikami łączącymi (tylko metakrylanem metylu oraz w kombinacji z innymi monomerami). Oceniono właściwości mechaniczne wzmocnionego tworzywa przechowywanego w warunkach suchych w temperaturze 23 ± 1ºC przez 24 godz. po wykonaniu próbek oraz po 7 dniach przechowywania w wodzie w temperaturze 37 ± 1ºC. Próbkami odniesienia były próbki niewzmocnione włóknem aramidowym. Badanie wykonano w zrywarce Instron typu 4411.
Wyniki. Wytrzymałość na zginanie próbek akrylowych wzmocnionych włóknami aramidowymi (AFRAR) zwiększyła się ze zwiększeniem liczby włókien w próbce, a także wówczas, gdy włókno było ułożone po stronie przeciwnej do kierunku działania siły. Najkorzystniejsze wyniki otrzymano dla monomeru Bis GMA, który tworzy wiązania wodorowe z włóknami aramidowymi.
Wnioski. Jednokierunkowe włókna aramidowe o powierzchni zwilżonej wielofunkcyjnym monomerem metakrylowym mogą znaleźć zastosowanie w stomatologii odtwórczej w celu polepszenia mechanicznych właściwości wlewowych żywic akrylowych stosowanych do wykonania płyt protez.

Key words

aramid fibers, acrylic resin, mechanical properties

Słowa kluczowe

włókna aramidowe, żywica akrylowa, właściwości mechaniczne

References (34)

  1. Goldberg A.J., Bustone C.J.: The use of continuous fiber reinforcement in dentistry. Dent. Mater. 1992, 8, 197–202.
  2. Guteridge D.L.: The effect of including ultra-high modulus polyethylene fiber on the impact strength of acrylic resins. Br. Dent. J. 1988, 164, 177–180.
  3. Valittu P.K.: Experiences of the use of glass fibers with multiphase acrylic resins systems, In: Vallittu PK, editor. The first symposium of fiber reinforced plastic in dentistry in the proceedings of the 22nd annual EPA conference. 1998, Paper II.
  4. Gutterrige D.L.: Reinforcement of poly(methyl methacrylate) with ultra high-modulus polyethylene fiber. J. Dent. 1992, 20, 50–54.
  5. Lassila L.V., Tezvergil A., Lahdenpera M., Alander P., Shinya A., Vallittu P.K.: Evaluation of some properties of two fiber-reinforced composite materials. Acta Odontol. Scand. 2005, 63, 196–204.
  6. Krenchel H.: Fiber reinforcement. Copenhagen: Akademisk Forlag 1964, 11–38.
  7. Murphy J.: Reinforced plastic handbook. 2nd ed. Oxford: Elsevier Science Ltd, 1998, 54–298.
  8. Vallittu P.K.: Flexural properties of acrylic resins polymers reinforced with unidirectional and woven glass fibers. J. Prosthet. Dent. 1999, 81, 318–326.
  9. Segerstrőm S., Ruyter I.E.: Mechanical and physical properties of carbon-graphite fiber-reinforced polymer intended for implant supra structures. Dent. Mater. 2007, 23, 1150–1156.
  10. Lassila L.V., Nohrstrőm T., Vallittu P.K.: The influence of short-term water storage on flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 2002, 10, 2221–2229.
  11. Jacob J., Gangadhar S.A., Shah I.: Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid or nylon fibers. J. Prosthet. Dent. 2001, 86, 424–427.
  12. Garoushi S.K., Lassila L.V., Vallittu P.K.: Short fiber reinforced composite: the effect of fiber length and volume fraction. J. Contemp. Dent. Pract. 2006, 7, 10–17.
  13. Gőkçe M., Eystein R.: Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica glass fibers. Dent. Mater. 2008, 24, 1050–1057.
  14. Gőhring T.N., Gallo L., Lüthy H.: Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on flexural strength of veneering composite. Dent. Mater. 2005, 21, 761–772.
  15. Vallittu P.K.: Comparison of two different silane compounds for improwing adhesion bettwen fibres and acrylic denture base material. J. Oral Rehabil. 1993, 20, 533–539.
  16. Gajdus P., Hędzelek W., Joniak S.: Attempts at using Kevlar aramide fibres in reinforcement of acrylic polymers – Part I Mechanical tests for the adhesive force of acrylic samples with Kevlar woven. Prot. Stomatol. 2003, 53, 235–241.
  17. Raszewski Z., Nowakowska D.: Flexural resistance of composite materials reinforced by aramide fibres: An in vitro study. Protet. Stomatol. 2009, 59, 407–414.
  18. Gajdus P., Hędzelek W., Joniak S.: Attempts at using aramide fibres in reinforcement of acrylic polymers – Part II Tests for the strenght of acrylic palatal plater reinfirced with Kevlar woven. Prot. Stomatol. 2003, 53, 302–306.
  19. Lassila L.V., Vallittu P.K.: The effect of fiber position and polymerization condition on the flexural properties of fiber reinforced composite. J. Contemp. Dent. Pract. 2004, 5, 14–26.
  20. Ruyter I.E., Svendsen S.A.: Flexural properties of denture base polymer. J. Prosthet. Dent. 1980, 43, 95–104.
  21. Segerstrőm S., Meriç G., Knarvang T., Ruyter I.E.: Evaluation of two matrix materials intended for fiber – reinforced polymers. Eur. J. Oral. Sci. 2005, 113, 422–428.
  22. Meriç G., Dahl J.E., Ruyter I.E.: Physicochemical evaluation of silica + glass fiber reinforced polymer for prosthodontic applications. Eur. J. Oral. Sci. 2005, 113, 258–264.
  23. ISO 6344-1 Coated abrasives – grain size analysis. Geneva: International Organization for Standarization. 1998, 1–6.
  24. ISO 1567. Dentistry – denture base polymer; Geneva: International Organization for Standardization. 1999, 1–27.
  25. Deboer J., Vermilyea S.G., Brandy R.E.: The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins. J. Prosthetic. Dent. 1984, 51, 119–121.
  26. Ellakwa A.E., Shortall A.C., Marquis P.M.: Influence of different techniques of laboratory construction on the fracture resistance of fiber-reinforced composite (FRC) bridges. J. Contemp. Dent. Pract. 2004, 5, 4, 1–13.
  27. Rahamneh A., Abdellateef A., Mineizel T.: Transverse strength of acrylic resins denture base material after the addition of different fibers. Pakist. Oral. Healf. J. 1999, 27, 116–118.
  28. Uzun G., Keyf F.: The effect of fiber reinforcement type and water storage on strength properties of a provisional fixed partial denture resin. J. Biomater. Appl. 2003, 17, 277–286.
  29. Uzun G., Hersek N., Tinçer T.: Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J. Prosthet. Dent. 1999, 81, 616–620.
  30. Foo S.H., Lindquist T.J., Aquilino S.A., Schneider R.L., Williamson D.L., Boyer D.B.: Effect of polyaramid fiber reinforcement on the strength of 3 denture base poly methyl methacrylate resins. J. Prosthodont. 2001, 10, 148–153.
  31. Vallittu P.K., Narva K.: Impact strength of a modified continuous glass fiber-poly(methyl methacrylate). Int. J. Prosthodont. 1997, 10, 2, 142–148.
  32. Vallittu P.K.: A review of fiber-reinforced denture base resins. J. Prosthodont. 1996, 5, 270–276.
  33. Vallittu P.K., Lassila V.P., Lappalainen R.: Acrylic resin-fiber composite. Part I: The effect of fiber concentration on fracture resistance. J. Prosthet. Dent. 1994, 71, 607–612.
  34. Vallittu P.K., Lassila V.P.: Reinforcement of acrylic resin denture base material with metal or fiber strengthener. Oral. Rehabil. 1992, 19, 225–230.