Dental and Medical Problems

Dent. Med. Probl.
Index Copernicus (ICV 2019) – 118.76
MNiSW – 20
CiteScore (2020) – 1.2
Average rejection rate (2020) – 88.71%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download PDF

Dental and Medical Problems

2009, vol. 46, nr 4, October-December, p. 477–485

Publication type: review article

Language: Polish

Właściwości i ryzyko stosowania metakrylanu bisfenolu A i dimetakrylanu uretanu – podstawowych monomerów kompozytów stomatologicznych

Properties and Risk of the Use of Bisphenol A−Glycidyl Methacrylate and Urethane Dimethacrylate – Basic Monomers of Dental Restorative Materials

Elżbieta Pawłowska1,, Katarzyna Loba2,, Janusz Błasiak2,, Joanna Szczepańska1,

1 Zakład Stomatologii Wieku Rozwojowego Uniwersytetu Medycznego w Łodzi

2 Katedra Genetyki Molekularnej Uniwersytetu Łódzkiego

Streszczenie

Żywice metakrylanowe ze względu na zdolność do łączenia się ze strukturą zęba są substancjami powszechnie stosowanymi w stomatologii. Początkowy sukces kliniczny tych materiałów odsunął niepokoje związane z ryzykiem biologicznym ich stosowania, gdyż zakładano, że materiały te były w formie polimerów, ściśle związanych ze strukturą zęba. Proces polimeryzacji nie zawsze jest jednak kompletny, a monomery mogą być także uwalniane z polimerów i penetrować nabłonek jamy ustnej i miazgę, skąd mogą przemieszczać się do innych tkanek i narządów. Miejscowe stężenia monomerów metakrylanowych mogą osiągać kilkanaście milimoli na litr, co jest wystarczające do wywoływania niepożądanych działań biologicznych. Wyniki wielu badań sugerują, że monomery, będące skutkiem niekompletnej polimeryzacji lub uwalniania z polimerów, mogą działać cytoi genotoksycznie. Metakrylan bisfenolu A (Bis−GMA) i metakrylan uretanu (UDMA) są podstawowymi monomerami metakrylanowymi stosowanymi w produkcji stomatologicznych materiałów złożonych. Mogą wywoływać wiele skutków niekorzystnych, takich jak: zaburzenia układu odpornościowego i nerwowego, oraz promować mutacje i niestabilność genomową. Istnieje zatem potrzeba intensyfikacji badań nad szkodliwym działaniem monomerów metakrylanowych oraz zapewnieniem odpowiedniej ochrony pacjentom i personelowi stomatologicznemu przed takim działaniem.

Abstract

Restorative dentistry uses methacrylate resin−based materials which can be bonded to the tooth structure. The initial clinical success of these materials partly put aside the concern about biological risk associated with their use, because it was assumed that these materials are in the form of polymers tightly bound to the tooth structure. However, the process of polymerization not always is complete and the polymer itself may release monomers, which can penetrate oral cavity and pulp, from where they can reach virtually any organ of the organism. The local concentration of monomers can be in the millimolar range, high enough to induce a variety of adverse biological effects. A large body of evidence suggest that monomers resulting from incomplete polymerization or released from the polymer may exert cytotoxic and genotoxic effects. Bisphenol A−glycidyl methacrylate (Bis−GMA) and urethane dimethacrylate (UDMA) are basic monomers used in forming dental restorative composites. They may induce several undesired effects, affecting immunological and nervous systems, promoting mutations and genomic instability. Therefore, there is a need to intensify the research on adverse biological effects of methacrylate monomers and on efficient protection of dental personnel and patients against such effects.

Słowa kluczowe

kompozyty, metakrylany, Bis−GMA, UDMA, działanie biologiczne

Key words

dental materials, methacrylates, Bis−GMA, UDMA, biological compatibility

References (71)

  1. SPAHL W., BUDZIKIEWICZ H.: Qualitative analysis of dental resin composites by gas and liquid chromatography/mass spectrometry. Fresenius J. Anal. Chem. 1994, 350, 684–691.
  2. MICHELSEN V.B, LYGRE H., SKÅLEVIK R., TVEIT A.B., SOLHEIM E.: Identification of organic eluates from four polymerbased dental filling materials. Eur. J. Oral. Sci. 2003, 111, 263–271.
  3. GEURTSEN W.: Biocompatibility of resin−modified filling materials. Crit. Rev. Oral Biol. Med. 2000, 11, 333–355.
  4. GEURTSEN W.: Substances released from dental resin composites and glass ionomer cements. Eur. J. Oral. Sci. 1998, 106, 687–695.
  5. JODKOWSKA E., MAŁKIEWICZ K.: Potencjał cytotoksyczny stomatologicznych materiałów wypełnieniowych i nadtlenku wodoru. Wydawnictwo Czelej, Lublin 2008.
  6. MOSZNER N., SALZ U.: New developments of polymeric dental composites. Prog. Polym. Sci. 2001, 26, 535–576.
  7. CAUGHMAN W.F., RUEGGEBERG F.A., CURTIS J.W. Jr.: Clinical guidelines for photocuring restorative resins. J. Am. Dent. Assoc. 1995, 126, 9, 1280–1282.
  8. TASDELEN M.A., MOSZNER N., YAGCI Y.: The use of poly(ethylene oxide) as hydrogen in type II photoinitiated free radical polymerization. Polym. Bull. 2009, 63, 173–183.
  9. ASMUSSEN E.: Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand. J. Dent. Res. 1982, 90, 490–496.
  10. IMAZATO S., MCCABE J.F., TARUMI H., EHARA A., EBISU S.: Degree of conversion of composites measured by DTA and FTIR. Dent. Mater. 2001, 17, 178–183.
  11. BOUILLAGUET S.: Biological risks of resin – based materials to the dentin – pulp complex. Crit. Rev. Oral Biol. Med. 2004, 15, 47–60.
  12. MOSZNER N., VOLKEL T., FISCHER U.K., KLESTER A.,RHEINBERGER V.: Synthesis and polymerisation of new multifunctional urethane methacrylates. Angew. Makromol. Chem. 1999, 265, 31–35.
  13. SIDERIDOU I., TSERKI V., PAPANASTASIOU G.: Effect of chemical structure on degree of conversion in light−cured dimethacrylate−based dental resin. Biomaterials 2003, 23, 1819–1829.
  14. STANSBURGY J.W., ANTONUCCI J.M.: Dimethacrylate monomers with varied fluorine contents and distributions. Dent. Mater. 1999, 15, 166–173.
  15. RENZ S., DICKENS B.: NIR−spectroscopic investigation of water sorption characteristics of dental resins and composites. J. Biomed. Mater. Res. 1991, 25, 1231–1248.
  16. BRADEN M., DAVY K.W.: Water absorption characteristics of some unfilled resins. Biomaterials 1986, 7, 474–575.
  17. FERRACANE J.L.: Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222.
  18. KERBY R.E., KNOBLOCH L.A., SCHRICKER S., GREGG B.: Synthesis and evaluation of modified urethane dimethacrylate resins with reduced water sorption and solubility. Dent. Mater. 2009, 25, 302–313.
  19. DE GEE A.F., FEIZLER A.J., DAVIDSON C.L.: True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent. Mater. 1993, 9, 11–14.
  20. DAVIDSON C.L., DE GEE A.J.: Light−curing units, polymerization, and clinical implications. J. Adhes. Dent. 2000, 2, 167–173.
  21. ATAI M., AHMADI M., BABANZADEH S., WATTS D.C.: Synthesis, characterization, shrinkage and curing kinetics of new low−shrinkage urethane dimethacrylate monomer for dental applications. Dent. Mater. 2007, 23, 1030–1041.
  22. POLYDOROU O., TRITTLER R., HELLWING E., KUMMERER K.: Elution of monomers from two conventional detal composite materials. Dent. Mater. 2007, 23, 1535–1541.
  23. GERZINA T.M., HUME W.R.: Effect of dentine on release of TEGDMA from resin composite in vitro. J. Oral. Rehabil. 1994, 21, 463–468.
  24. HANKS C.T., CRAIG R.G., DIEHL M.L., PASHLEY D.H.: Cytotoxicity of dental composites and other materials in a new in vitro device. J. Oral Pathol. 1988, 17, 396–403.
  25. PEUTZFELD A.: Resin composites in dentistry the monomer system. Eur. J. Oral Sci. 1997, 105, 97–116.
  26. SANTERRE J.P., SHAJI Z., LEUNG B.W.: Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric−resin−derived products. Crit. Rev. Oral Biol. Med. 2001, 12, 136–151.
  27. ORTENGREN U., LUNDGREN T., LANGER S., GÖRANSON A.: Influence of pH and time on organic substance release from a model dental composite: a fluorescence spectrophotometry and gas chromatography/mass spectrometry analysis. Eur. J. Oral Sci. 2004, 112, 530–537.
  28. MUNKSGAARD E.C., FREUD M.: Enzyme hydrolysis of (di)methacrylates and their polymers. Scand. J. Dent Res. 1990, 98, 261–267.
  29. HANDEL C., LEYHAUSEN G., MAI U.E., GEURTSEN W.: Effects of various resin composite (co)monomers and extracts of two caries−associated microorganisms in vitro. J. Dent. Res. 1998, 77, 60–67.
  30. DE UNCK J., VAN LANDUYT K., PEUMANS M., POITEVIN A., LAMBRECHT P., BRAEM M., VAN MEERBEK B.: A critical review of the durability of adhesion to tooth tissue: methods and results. J. Dent. Res. 2005, 84, 118–132.
  31. NAKAMURA M., OSHIMA H., HASHIMOTO Y.: Monomer permeability of disposable dental gloves. J. Prosthet. Dent. 2003, 90, 81–85.
  32. KIEĆ−ŚWIERCZYŃSKA M.: Alergiczne kontaktowe zapalenie skóry. Alergia Astma Immunol. 1998, 3, 61–65.
  33. SCHAFER T.E., LAPP C.A., HANES C.M., LEWIS J.B., WATAHA J.C., SCHUSTER G.S.: Estrogenicity of bisfenol A and bisfenol A dimethacrylate in vitro. J. Biomed. Mater. Res. 1999, 45, 192–197.
  34. SCHWEIKL H., HILLER K.A., BOLAY C., KREISSL M., KREISMANN W., NUSSER A., STEINHAUSER S., WIECZOREK J., VASOLD R., SCHMALZ G.: Cytotoxic and mutagenic effects of dental composite materials. Biomaterials 2005, 26, 1713–1719.
  35. Geurtsen W., SPAHL W., MÜLLER K., LEYHAUSEN G.: Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J. Biomed. Mater. Res. 1999, 48, 772–777.
  36. WADA H., TURAMI H., IMAZATO S., NARIMATSU M., EBISU S.: In vitro estrogenicity of resin composites. J. Dent. Res. 2004, 83, 222–226.
  37. JAKUBASZKO E.: Substancje o działaniu estrogennym uwalniane w środowisku jamy ustnej z materiałów złożonych. Dent. Med. Probl. 2002, 39, 285–288.
  38. KLEINSASSER N.H., SCHMID K., SASSEN A.W., HARREUS U.A., STAUDENMAIER R., FOLWACZNY M., GLAS J., REICHL F.X.: Cytotoxic and genotoxic effect of resin monomers in human salivary gland tissue and lymphocytes as assessed by the single cell microgel electrophoresis (Comet) assay. Biomaterials 2006, 27, 1762–1770.
  39. KLEINSASSER N.H., WALLNER B.C., HARREUS U.A., KLEINJUNG T., FOLWACZNY M., HICKEL R., KEHE K., REICHL F.X.: Genotoxicity and cytotoxicity of dental materials in human lymphocytes as assessed by the single cell microgel electrophoresis (comet) assay. J. Dent. 2004, 32, 229–234.
  40. MOHARAMZADEH K., VAN NOORT R., BROOK I.M., SCUTT A.M.: Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 2007, 23, 40–44.
  41. IMAZATO S., HORIKAWA D., OGATA K., KINOMOTO Y., EBISU S.: Responses of MC3T3−E1 cells to three dental resin−based restorative materials. J. Biomed. Mater. Res. A. 2006, 76, 765–772.
  42. ISSA Y., WATTS D.C., BRUNTON P.A., WATERS C.M., DUXBURY A.J.: Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent. Mater. 2004, 20, 12–20.
  43. DARMANI H., AL−HIYASAT A.S.: The effects of BIS−GMA and TEG−DMA on female mouse fertility. Dent. Mater. 2006, 22, 353–358.
  44. KOSTORYZ E.L., WETMORE L.A., BROCKMANNW.G., YOURTEE D.M., EICK J.D.: Genotoxicity assessment of oxirane−based dental monomers in mammalian cells. J. Biomed. Mater. Res. A. 2004, 68, 660–667.
  45. SPAGNUOLO G., ANNUNZIATA M., RENGO S.: Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and LED lights. Clin. Oral Investig. 2004, 8, 81–85.
  46. DEMIRCI M., HILLER K.A., BOSL C., GALLER K., SCHMALZ G., SCHWEIKL H.: The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent. Mater. 2008, 24, 362–371.
  47. KOSTORYZ E.L., EICK J.D., GLAROS A.G., JUDY B.M., WELSHONS W.V., BURMASTER S., YOURTEE D.M.: Biocompatibility of hydroxylated metabolites of BISGMA and BFDGE. J. Dent. Res. 2003, 82, 367–371.
  48. REICHL F.X., SIMON S., ESTERS M., SEISS M., KEHE K., KLEINSASSER N.: Cytotoxicity of dental composite (co)monomers and the amalgam component Hg2+ in human gingival fibroblasts. Arch. Toxicol. 2006, 80, 465–472.
  49. TARUMI H., IMAZATO S., NARIMATSU M., MATSUO M., EBISU S.: Estrogenicity of fissure sealants and adhesive resins determined by reporter gene assay. J. Dent. Res., 2000, 79, 1838–1843.
  50. DI PIETRO A., VISALLI G., LAMAESTRA S., MICALE R., BALUCE B., MATARESE G., CINGANO L., SCOGLIO M.E.: Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative filling. Mutat. Res. 2008, 650, 115–122.
  51. HEIL J., REIFFERSCHEID G., WALDMANN P., LEYHAUSEN G., GEURTSEN W.: Genotoxicity of dental materials. Mutat. Res. 1996, 368, 181–194.
  52. SCHWEIKL H., HILLER K.A., ECKHARDT A., BOLAY C., SPAGNUOLO G., STEMPFL T., SCHMALZ G.: Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials 2008, 29, 1377–1387.
  53. WALTHER U.I., SIAGIAN I.I., WALTHER S.C., REICHL F.X., HICKEL R.: Antioxidative vitamins decrease cytotoxicity of HEMA and TEGDMA in cultured cell lines. Arch. Oral. Biol. 2004, 49, 125–131.
  54. STANISŁAWSKI L., LEFEUVRE M., BOURD K., SOGEILI−MAJD E., GOLDBERG M., PERIANIN A.: TEGDMA−induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J. Biomed. Mater. Res. A. 2003, 66, 476–482.
  55. SAMUELSEN J.T., DAHL J.E., KARLSSON S., MORISBAK E., BECHER R.: Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP−kinases p38, JNK and ERK. Dent. Mater. 2007, 23, 34–39.
  56. NOCCA G., LUPI A., DE SANTIS F., GIARDINA B., DE PALMA F., CHIMENTI C., GAMBARINI G., DE SOLE P.: Effect of methacrylic monomers on phagocytes reactive oxygen species: a possible BDDMA modulating action. Luminescence 2008, 23, 54–57.
  57. POPŁAWSKI T.: Cytotoxicity and genotoxicity of glycidylmethacrylate. Chem. Biol. Interact. 2009, 180, 69–78.
  58. ENGELMANN J., JANKE V., VOLK J., LEYHAUSEN G., VON NEUHOFF N., SCHLEGELBERGER B., GEURTSEN W.: Effects of BisGMA on glutathione metabolism and apoptosis in human gingival fibroblasts in vitro. Biomaterials 2004, 25, 4573–4580.
  59. ENGELMANN J, LEYHAUSEN G, LEIBFRITZ D, GEURTSEN W.: Metabolic effects of dental resin components in vitro detected by NMR spectroscopy. J. Dent. Res. 2001, 80, 869–875.
  60. STANISLAWSKI L., SOHEILI−MAJD E., PERIANIN A., GOLDBERG M.: Dental restorative biomaterials induce glutatione depletion in cultured human gingival fibroblast: protective effect of N−acetyl cysteine. J. Biomed. Mater. Res. 2000, 51, 469–474.
  61. SOHEILI−MAJD E., GOLDBERG M., STANISLAWSKI L.: In vitro effects of ascorbate and trolox on the biocompatibility of dental restorative materials. Biomaterials 2003, 24, 3–9.
  62. MEISTER A., ANDERSON M.E.: Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760.
  63. DICKINSON D.A., FORMAN H.J.: Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002, 64, 1019–1026.
  64. CEJAS P., CASADO E., BELDA−INIESTA C., DE CASTRO J., ESPINOSA E., REDONDO A., SERENO M., GARCÍA−CABEZAS M.A., VARA J.A., DOMÍNGUEZ−CÁCERES A., PERONA R., GONZÁLEZ−BARÓN M.: Implications of oxidative stress and cell membrane lipid peroxidation in human cancer. Cancer Causes Control. 2004, 15, 707–719.
  65. MIYAMOTO Y., KOH Y.H., PARK Y.S., FUJIWARA N., SAKIYAMA H., MISONOU Y., OOKAWARA T., SUZUKI K., HONKE K., TANIGUCHI N.: Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol. Chem. 2003, 384, 567–574.
  66. LANDER H.M., TAURAS J.M., OGISTE J.S., HORI O., MOSS R.A., SCHMIDT A.M.: Activation of the receptor for advanced glycation end products triggers a p21(ras)−dependent mitogen−activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 1997, 272, 17810–17814.
  67. LEE D., LIM B., LEE Y., YANG H.: In vitro biological adverse effects of dental resin monomers and endodontic root canal sealers. Curr. App. Phys. 2007, 7, e130–e134.
  68. VOLK J., ENGELMANN J., LEYHAUSEN G., GEURTSEN W.: Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts. Dent. Mater. 2006, 22, 499–505.
  69. GEURTSEN W., LEHMANN F., SPAHLW., LEYHAUSEN G.: Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J. Biomed. Mater. Res. 1998, 41, 474–480.
  70. FUJISAWA S., KADOMA Y., KOMODA Y.: Changes in 1H−NMR chemical shifts of Bis−GMA and its related methacrylates induced by their interaction with phosphatidylcholine/cholesterol liposomes. Dent. Mater. J. 1991, 10, 121–127.
  71. AHLERS J., CASCORBI I., FORET M., GIES A., KOHLER M., PAULI W., RÖSICK E.: Interaction with functional membrane proteins – a common mechanism of toxicity for lipophilic environmental chemicals? Comp. Biochem. Physiol. C. 1991, 100, 111–113.