Dental and Medical Problems

Dent Med Probl
Index Copernicus (ICV 2021) – 132.50
MEiN – 70 pts
CiteScore (2021) – 2.0
JCI (2021) – 0.5
Average rejection rate (2022) – 79.69%
ISSN 1644-387X (print)
ISSN 2300-9020 (online)
Periodicity – quarterly

Download original text (EN)

Dental and Medical Problems

Ahead of print

doi: 10.17219/dmp/142447

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Dommeti VK, Pramanik S, Roy S. Design of customized coated dental implants using finite element analysis [published online as ahead of print on March 14, 2023]. Dent Med Probl. doi:10.17219/dmp/142447

Design of customized coated dental implants using finite element analysis

Vamsi Krishna Dommeti1,B,C, Sumit Pramanik1,E,F, Sandipan Roy1,A,D,E,F

1 Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India

Abstract

Background. Dental implants are used as a traditional technique to replace missing teeth. In the longterm evaluation of dental implants, the stability and durability of the implant–bone interface are crucial. Furthermore, the success of dental implants depends on several factors, such as osseointegration, implant geometry and surface topography.
Objectives. The aim of the study was to investigate the effects of coating materials on dental implants by altering several parameters, including the material used, the coating thickness, and different combinations of the cortical and cancellous bones.
Material and methods. The coating materials used were hydroxyapatite (HAP), monticellite (MTC) and titanium nitride (TiN). The coating thickness was varied as 50 μm, 100 μm, 150 μm, and 200 μm. Five different bone combinations were used for the proposed finite element model. An axial compressive load of 150 N was applied.
Results. The FEA showed that the HAP coating material had a significant effect on minimizing the induced stress concentration for all 5 bone combinations. However, the MTC coating material had a significant effect only on 2 bone combinations (combination 2 and combination 3). Meanwhile, the TiN coating material induced higher stress values.
Conclusions. Based on finite element analysis (FEA), it was observed that the coating thickness greatly influenced the concentration of the mechanical stress. Indeed, when the coating thickness was relatively high, the stress concentration value significantly decreased.

Key words

bone condition, finite element analysis, dental implant, coating thickness, coating materials

References (46)

  1. Hämmerle CH, Glauser R. Clinical evaluation of dental implant treatment. Periodontol 2000. 2004;34:230–239. doi:10.1046/j.0906-6713.2003.003434.x
  2. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–170. doi:10.3109/17453678108991776
  3. Guarnieri R, Miccoli G, Reda R, Mazzoni A, Di Nardo D, Testarelli L. Laser microgrooved vs. machined healing abutment disconnection/reconnection: A comparative clinical, radiographical and biochemical study with split-mouth design. Int J Implant Dent. 2021;7(1):19. doi:10.1186/s40729-021-00301-6
  4. Liu X, Chen S. Tsoi JKH, Matinlinna JP. Binary titanium alloys as dental implant materials – a review. Regen Biomater. 2017;4(5):315–323. doi:10.1093/rb/rbx027
  5. Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants. 1995;10(3):326–334. PMID:7615329.
  6. Quirynen M, Naert I, Van Steenberghe D. Fixture design and overload influence marginal bone loss and future success in the Brånemark system. Clin Oral Implants Res. 1992;3(3):104–111. doi:10.1034/j.1600-0501.1992.030302.x
  7. El Askary AS, Meffert RM, Griffin T. Why do dental implants fail? Part I. Implant Dent. 1999;8(2):173–185. PMID:10635160.
  8. El Askary AS, Meffert RM, Griffin T. Why do dental implants fail? Part II. Implant Dent. 1999;8(3):265–277. doi:10.1097/00008505-199903000-00008
  9. Spoerke ED, Murray NG, Li H, Brinson LC, Dunand DC, Stupp SI. A bioactive titanium foam scaffold for bone repair. Acta Biomater. 2005;1(5):523–533. doi:10.1016/j.actbio.2005.04.005
  10. Chaturvedi TP. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Sci. 2009;20(1):91–98. doi:10.4103/0970-9290.49068
  11. Noumbissi S, Scarano A, Gupta S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials (Basel). 2019;12(3):368. doi:10.3390/ma12030368
  12. Manivasagam G, Mudali UK, Asokamani R, Raj B. Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices. Corros Rev. 2003;21(2–3):125–160. doi:10.1515/CORRREV.2003.21.2-3.125
  13. Richard C, Kowandy C, Landoulsi J, Geetha M, Ramasawmy H. Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure titanium and Ti-13Nb-13Zr substrates. Int J Refract Met Hard Mater. 2010;28(1):115–123. doi:10.1016/j.ijrmhm.2009.08.006
  14. Machado López MM, Fauré J, Espitia Cabrera MI, Contreras García ME. Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications. Mater Sci Eng B. 2016;206:30–38. doi:10.1016/j.mseb.2015.09.003
  15. Mehdipour M, Afshar A, Mohebali M. Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study. Appl Surf Sci. 2012;258(24):9832–9839. doi:10.1016/j.apsusc.2012.06.038
  16. Gómez-de Diego R, del Rocío Mang-de la Rosa M, Romero-Pérez MJ, Cutando-Soriano A, López-Valverde-Centeno A. Indications and contraindications of dental implants in medically compromised patients: Update. Med Oral Patol Oral Cir Bucal. 2014;19(5):e483–e489. doi:10.4317/medoral.19565
  17. Salaie RN, Besinis A, Le H, Tredwin C, Handy RD. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Mater Sci Eng C. 2020;107:110210. doi:10.1016/j.msec.2019.110210
  18. Aranya AK, Pushalkar S, Zhao M, LeGeros RZ, Zhang Y, Saxena D. Antibacterial and bioactive coatings on titanium implant surfaces. J Biomed Mater Res A. 2017;105(8):2218–2227. doi:10.1002/jbm.a.36081
  19. Rahmati M, Lyngstadaas SP, Reseland JE, et al. Coating doxycycline on titanium-based implants: Two in vivo studies. Bioact Mater. 2020;5(4):787–797. doi:10.1016/j.bioactmat.2020.05.007
  20. Khanmohammadi S, Ilkhchi MO. Effect of suspension medium on the characteristics of electrophoretically deposited bioactive glass coatings on titanium substrate. J Non Cryst Solids. 2019;503–504:232–242. doi:10.1016/j.jnoncrysol.2018.10.001
  21. Priyadarshini B, Rama M, Chetan, Vijayalakshmi U. Bioactive coating as a surface modification technique for biocompatible metallic implants: A review. J Asian Ceram Soc. 2019;7(4):397–406. doi:10.1080/21870764.2019.1669861
  22. Pramanik S, Agarwal AK, Rai KN, Garg A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int. 2007;33(3):419–426. doi:10.1016/j.ceramint.2005.10.025
  23. Pramanik S, Agarwal AK, Rai KN. Development of high strength hydroxyapatite for hard tissue replacement. Trends Biomater Artif Organs. 2005;19(1):46–51.
  24. Oshkour AA, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Abu Osman NA. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. J Mech Behav Biomed Mater. 2015;49:321–331. doi:10.1016/j.jmbbm.2015.05.020
  25. Pramanik S, Kar KK. Nanohydroxyapatite synthesized from calcium oxide and its characterization. Int J Adv Manuf Technol. 2013;66:1181–1189. doi:10.1007/s00170-012-4401-z
  26. Abdu Aliyu AA, Abdul-Rani AM, Ginta TL, Rao TV, Selvamurugan N, Roy S. Hydroxyapatite mixed-electro discharge formation of bioceramic Lakargiite (CaZrO3) on Zr-Cu-Ni-Ti-Be for orthopedic application. Mater Manuf Process. 2018;33(16):1734–1744. doi:10.1080/10426914.2018.1512122
  27. Roy S, Dey S, Khutia N, Chowdhury AR, Datta S. Design of patient specific dental implant using FE analysis and computational intelligence techniques. Appl Soft Comput. 2018;65:272–279. doi:10.1016/j.asoc.2018.01.025
  28. Kasani R, Sai Attili BK, Dommeti VK, Merdji A, Biswas JK, Roy S. Stress distribution of overdenture using odd number implants – a finite element study. J Mech Behav Biomed Mater. 2019;98:369–382. doi:10.1016/j.jmbbm.2019.06.030
  29. El-Anwar MI, El-Zawahry MM, El-Mofty MS. Load transfer on dental implants and surrounding bones. Aust J Basic Appl Sci. 2012;6(3):551–560.
  30. Jain V, Dommeti VK, Rana M, Roy S. Influences of stresses on dental implant threads using finite-element analysis. J Long Term Eff Med Implants. 2019;29(2):125–133. doi:10.1615/JLongTermEffMedImplants.2019031812
  31. Roy S, Panda D, Khutia N, Chowdhury AR. Pore geometry optimization of titanium (Ti6Al4V) alloy, for its application in the fabrication of customized hip implants. Int J Biomater. 2014;2014:313975. doi:10.1155/2014/313975
  32. Baltag I, Watanabe K, Kusakari H, et al. Long‐term changes of hydroxyapatite‐coated dental implants. J Biomed Mater Res A. 2000;53(1):76–85. doi:10.1002/(sici)1097-4636(2000)53:1<76::aid-jbm11>3.0.co;2-4
  33. Hedia HS. Effect of coating thickness and its material on the stress distribution for dental implants. J Med Eng Technol. 2007;31(4);280–287. doi:10.1080/03091900600861616
  34. Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw. 2006;37(10):649–658. doi:10.1016/j.advengsoft.2006.02.004
  35. El-Abidine Arab AZ, Merdji A, Benaissa A, et al. Finite-element analysis of a lateral femoro-tibial impact on the total knee arthroplasty. Comput Methods Programs Biomed. 2020;192:105446. doi:10.1016/j.cmpb.2020.105446
  36. Oshkour AA, Talebi H, Shirazi SF, et al. Parametric study of radial functionally graded femoral prostheses with different geometries. Meccanica. 2015;50:1657–1678. doi:10.1007/s11012-015-0121-4
  37. Chen X, Ou J, Kang Y, et al. Synthesis and characteristics of monticellite bioactive ceramic. J Mater Sci Mater Med. 2008;19(3):1257–1263. doi:10.1007/s10856-007-3233-0
  38. Holmberg K, Ronkainen H, Laukkanen A, Wallin K, Erdemir A, Eryilmaz O. Tribological analysis of TiN and DLC coated contacts by 3D FEM modelling and stress simulation. Wear. 2008;264(9–10):877–884. doi:10.1016/j.wear.2006.12.084
  39. Roy S, Das M, Chakraborty P, et al. Optimal selection of dental implant for different bone conditions based on the mechanical response. Acta Bioeng Biomech. 2017;19(2):11–20. doi:10.5277/ABB-00530-2015-03
  40. Roy S, Khutia N, Das D, et al. Understanding compressive deformation behavior of porous Ti using finite element analysis. Mater Sci Eng C. 2016;64:436–443. doi:10.1016/j.msec.2016.03.066
  41. Lee JJ, Rouhfar L, Beirne OR. Survival of hydroxyapatite-coated implants: A meta-analytic review. J Oral Maxillofac Surg. 2000;58(12):1372–1379. doi:10.1053/joms.2000.18269
  42. Choudhury P, Agrawal DC. Sol-gel derived hydroxyapatite coatings on titanium substrates. Surf Coat Technol. 2011;206(2–3):360–365. doi:10.1016/j.surfcoat.2011.07.031
  43. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater. 2005;24(2):219–224. doi:10.4012/dmj.24.219
  44. Taharou B, Merdji A, Hillstrom R, et al. Biomechanical evaluation of bone quality effect on stresses at bone–implant interface: A finite element study. J Appl Comput Mech. 2021;7(3):1266–1275. doi:10.22055/JACM.2020.32323.2005
  45. Mavrogenis AF, Dimitroiu R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9(2):61–71. PMID:19516081.
  46. Frost HM. Bone’s mechanostat: A 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275(2):1081–1101. doi:10.1002/ar.a.10119