

Checkpoint inhibitors in squamous cell carcinoma of the head and neck: History and new perspectives

Marcin Sokołowski^{1,A–D*}, Magdalena Chrząszcz^{1,A,D*}, Aleksandra Butrym^{1,2,E,F}

¹ Dr. Alfred Sokolowski Specialist Hospital in Walbrzych, Poland

² Department of Cancer Prevention and Therapy, Wrocław Medical University, Poland

*first authors

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article

Dental and Medical Problems, ISSN 1644-387X (print), ISSN 2300-9020 (online)

Dent Med Probl. 2025;62(6):1223–1235

Address for correspondence

Aleksandra Butrym

E-mail: aleksandra.butrym@gmail.com

Funding sources

The study was supported by the grant of the Medical Research Agency, Poland (KPOD.07.07-IW.07-0321/24).

Conflict of interest

None declared

Acknowledgements

None declared

Received on May 13, 2025

Reviewed on June 2, 2025

Accepted on June 9, 2025

Published online on December 22, 2025

Abstract

This review aims to comprehensively examine the historical development, molecular mechanisms and clinical applications of checkpoint inhibitors in squamous cell carcinoma of the head and neck (SCCHN). Squamous cell carcinoma of the head and neck represents a significant global health challenge as the 7th most common malignancy worldwide. Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 and CTLA-4 pathways have emerged as promising therapeutic approaches. Current evidence supports the use of ICIs in the recurrent/metastatic (R/M) setting, while data for neoadjuvant and adjuvant applications is evolving. Pembrolizumab monotherapy or in combination with chemotherapy has demonstrated survival benefits in PD-L1-positive R/M SCCHN, while nivolumab has shown efficacy in the second-line setting. Results from trials combining ICIs with radiotherapy have been mixed, with several phase III studies failing to meet primary endpoints.

The integration of ICIs has transformed the treatment landscape for R/M SCCHN, while the ongoing research continues to define their optimal use in earlier disease settings and in novel therapeutic combinations. Future directions include exploring combination strategies with targeted therapies, identifying predictive biomarkers beyond PD-L1 expression, and developing immunotherapy approaches tailored to HPV-positive vs. HPV-negative disease.

Keywords: CTLA-4, PD-1, PD-L1, head and neck squamous cell carcinoma, checkpoint inhibitors

Cite as

Sokołowski M, Chrząszcz M, Butrym A. Checkpoint inhibitors in squamous cell carcinoma of the head and neck: History and new perspectives. *Dent Med Probl.* 2025;62(6):1223–1235.
doi:10.17219/dmp/206913

DOI

10.17219/dmp/206913

Copyright

Copyright by Author(s)

This is an article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License (CC BY 3.0)

(<https://creativecommons.org/licenses/by/3.0/>).

Highlights

- Squamous cell carcinoma of the head and neck (SCCHN) represents a significant global health challenge.
- Immune checkpoint inhibitors (ICIs) are one of most promising paths in the therapy of SCCHN.
- Immunotherapy could be used in different phases of treatment as neoadjuvant therapy, adjuvant therapy after definitive surgery, in combination with definitive (radical) radiotherapy, or as palliative care.
- Pembrolizumab and nivolumab have been integrated into routine clinical practice for metastatic and relapsed SCCHN.

Introduction

Head and neck cancer has emerged as a global health challenge, representing the 7th most common malignancy worldwide, with an annual incidence of 890,000 cases and around 450,000 deaths in 2022.¹ Squamous cell carcinomas constitute approx. 90% of all head and neck cancers (SCCHN).² The prevalence of SCCHN is significantly higher in developing countries.³ Environmental carcinogens, particularly tobacco and alcohol, are responsible for 75–85% of SCCHN cases.⁴ The molecular pathogenesis of SCCHN frequently involves mutations in the tumor protein p53 gene (*TP53*), induced by xenobiotics that interfere with DNA synthesis and repair mechanisms. *TP53* mutations are associated with shorter overall survival (OS), potential therapeutic resistance and increased recurrence rates.⁵ Human papillomavirus (HPV) infection represents a second major etiological factor, particularly in oropharyngeal cancers. HPV-positive patients constitute approx. 30–35% of oropharyngeal cancer cases and 6% of all oropharynx cancers. In contrast to *TP53*-mutated tumors, HPV-positive disease is associated with significantly better outcomes.^{6,7} Furthermore, the role of Epstein–Barr virus (EBV) infection in the development and progression of tumor cells has been proven in head and neck cancers, such as nasopharyngeal cancer.⁸ In case of cytomegalovirus (CMV), oncogenic potential in head and neck cancer is unclear.⁹ Additional risk factors include radiation exposure, poor oral hygiene, inadequate nutrition, betel nut chewing, ill-fitting dentures, and certain genetic syndromes, such as Fanconi anemia, ataxia–telangiectasia, Bloom's syndrome, Li–Fraumeni syndrome, and dyskeratosis congenita.⁸ The association between periodontal disease,⁹ gut microbiota¹⁰ and cancer risk has also been postulated.

The molecular mechanisms of head and neck carcinogenesis comprise genetic and epigenetic alterations, which lead to the malignant neoplastic process. Among genetic factors, the most important are mutated oncogenes *p53* or *RAS*, as well as the inactivation of tumor suppressor proteins like p16INK4a.¹¹ Uncontrolled proliferation and apoptosis evasion – typical for cancer – are connected

with such pathways as the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and Wnt/β-catenin.¹² DNA methylation, histone acetylation and methylation, as well as microRNA-mediated regulation, are among the most probable epigenetic factors involved in the tumorigenesis of head and neck cancers.¹³

While advances in diagnostic techniques, including artificial intelligence (AI)-based approaches and neural networks, have improved early detection,¹⁴ novel therapeutic strategies are needed for advanced-stage disease to complement or replace conventional chemotherapy and radiotherapy. Immune checkpoint inhibitors (ICIs) have emerged as one of the most promising approaches in the systemic treatment of SCCHN. In patients who may potentially benefit from ICI therapy, programmed death ligand-1 (PD-L1) expression is evaluated using the combined positive score (CPS), defined as the number of PD-L1-positive cells (tumor cells, lymphocytes and macrophages) divided by the total number of tumor cells, multiplied by 100.^{15,16}

Despite the growing amount of literature on immunotherapy in SCCHN, most of the existing reviews focus either on the general mechanisms of immune checkpoint inhibition or on specific clinical trials, without integrating historical context, biomarker-driven strategies and the emerging therapeutic combinations. There is a lack of comprehensive narrative reviews that would bridge the evolution of checkpoint inhibitors with current clinical applications and future directions in SCCHN treatment.

This review addresses that gap by aiming to provide a comprehensive overview of the historical development and current vision of checkpoint inhibitor therapy in SCCHN, highlighting key clinical trials, the emerging therapeutic targets and future directions in immunotherapy.

Material and methods

The literature search was performed using the PubMed, Scopus and Web of Science electronic databases.

We included peer-reviewed articles published between 1982 and May 2024, written in English, that addressed the use of checkpoint inhibitors in the treatment of SCCHN. Both clinical trials and high-quality narrative or systematic reviews were considered.

Studies were included if they met the following criteria: studies involving adult patients with SCCHN; articles discussing checkpoint inhibitors as monotherapy or in combination; reviews and clinical trials with clearly reported outcomes. Exclusion criteria were as follows: non-English publications; case reports; editorials; studies focusing on non-squamous histology or unrelated cancer types.

Immune checkpoint inhibitors (ICIs) – biological basis and development

The field of cancer immunotherapy was revolutionized by the pioneering work of Tasuku Honjo from Kyoto University, Japan, and James Patrick Allison from MD Anderson Cancer Center, Houston, Texas, who were awarded the Nobel Prize in Physiology and Medicine in 2018 for their discovery of cancer therapy through the inhibition of negative immune regulation.¹⁷

PD-1/PD-L1 pathway

Honjo's research group first isolated the complementary DNA (cDNA) of programmed death receptor-1 (PD-1)¹⁸ and demonstrated its role as a negative regulator of B cell responses, particularly in antibody class switching.¹⁹ PD-1 is a member of the immunoglobulin superfamily and the cluster of differentiation (CD)28/cytotoxic T-lymphocyte associated protein-4 (CTLA-4) subfamily, expressed on CD8+ and CD4+ T cells, natural killer (NK) cells, B cells, and tumor-infiltrating lymphocytes (TILs).²⁰ PD-1 expression is induced by cytokines interleukin (IL)-2, IL-7, IL-15, and IL-21.²¹ Additionally, ICIs can influence the cytokine environment; for example, avelumab reduces STAT3 expression, affecting interleukin -17 receptor A (IL-17RA) and CD15.²²

The characteristic feature of the immunoglobulin (Ig) superfamily is a single Ig V-like domain in the extracellular region, which is crucial for binding to ligands.²³ The PD-1 structure comprises 3 parts: a ~20-amino acid stalk; a transmembrane domain; and a cytoplasmic tail with 2 tyrosine-based signaling motifs. The N-terminal extremity sequence contains an immunoreceptor tyrosine-based inhibitory motif (ITIM), called VDYGEL, which recruits SH2 domain-containing phosphatases.²⁴ The elements responsible for the inhibitory function of PD-1, the sequence TEYATI and immunoreceptor tyrosine-based switch motif (ITSM), are located at the C-terminal extremity.²⁵

The ligation of PD-1 leads to the formation of PD-1/T-cell receptor (TCR) inhibitory micro-clusters,

and recruits SHP1/2. Simultaneously, ITIM and ITSM sequences are dephosphorylated by Src-family tyrosine kinases. The intracellular pathways Ras GTPase/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (RAS/MEK/ERK) and PI3K/AKT are activated through the recruitment of SHP1 and SHP2. SHPs can also block protein kinase C theta (PKC-θ) and ZAP-70.²⁶ Consequently, this sequence arrests the cell cycle and suppresses T cell activation through the induction of apoptosis, the reduction of proliferation and the inhibition of cytokine secretion.^{27,28}

Programmed death ligand-1 (PD-L1), also known as protein B7-H1 or CD274, was identified through the collaboration of the Honjo and Freeman research groups.²⁹ This ligand is encoded on chromosome 9p24.1 in the *CD274* gene,³⁰ and is expressed on the surface of T cells, B cells, macrophages, dendritic cells, mesenchymal stem cells, and bone marrow-derived mast cells.³¹ PD-L1 binding can increase T-cell proliferation, decrease IL-2 secretion and increase IL-10 secretion.³² PD-L2 (CD273 or B7-DC) is encoded by the *PDCD1LG2* gene on chromosome 9p24.1.³² This protein was isolated by Latchman and colleagues,³³ and is expressed on activated CD4+ or CD8+ cells, dendritic cells, macrophages, and bone marrow-derived mast cells.^{34,35} The interaction between PD-L1 located on tumor cells and PD-1 on T cells can diminish the immunological response to neoplastic disease by suppressing T cell activation. Multiple cytokines are identified as biomarkers for the diagnosis, prognosis and treatment of oral squamous cell carcinoma.³⁶

The rapid development of PD-1 inhibitors (nivolumab, pembrolizumab, dostarlimab, cemiplimab) and PD-L1 inhibitors (atezolizumab, avelumab, durvalumab) has revolutionized the systemic treatment of various cancers.³⁶

CTLA-4 pathway

In 1991, James Patrick Allison, the second "father of immunotherapy," discovered CTLA-4 and demonstrated its inhibitory role in anti-tumor T-cell activity.^{37,38} In 1995, CTLA-4 was identified as a negative regulator of T-cell activation.³⁹ The receptor, also known as CD152, is a member of the Ig superfamily responsible for recruiting phosphatases to TCRs and attenuating their signals.⁴⁰ CTLA-4 is also found in regulatory T cells and dendritic cells.⁴¹ In 1996, Allison demonstrated that the blockade of CTLA-4 could enhance anti-tumor immune responses, opening a second avenue for ICI therapy.⁴² In 2011, the Food and Drug Administration (FDA) approved the first anti-CTLA-4 antibody, ipilimumab, for the treatment of metastatic melanoma.⁴³ Subsequently, CTLA-4 blockade has become an integral component of therapeutic regimens for SCCHN.⁴⁴ The emerging data suggests that another antibody from this group, tremelimumab, is being investigated for application in SCCHN therapy.⁴⁵

Neoadjuvant therapy before definitive surgery

The anatomical location of head and neck cancers often necessitates disfiguring surgical or radiotherapeutic procedures, which can significantly impair quality of life after radical therapy. The implementation of neoadjuvant or concurrent (with radiotherapy) systemic treatment using ICIs could potentially reduce complications and improve cosmetic outcomes, thereby enhancing quality of life and prolonging disease-free survival (DFS). Furthermore, tumor downstaging may render previously unresectable lesions amenable to surgical resection and reduce the risk of positive surgical margins. Upfront surgery and neoadjuvant chemotherapy were compared in a retrospective study.⁴⁶

Recent years have witnessed numerous investigations focusing on neoadjuvant ICI therapy. One of the earliest studies was the phase II trial NCT02296684, in which 14 patients received 2 doses of neoadjuvant pembrolizumab before surgical intervention for head and neck cancer.⁴⁷ A substantial pathological tumor response (pTR) ($\geq 50\%$) was observed in 45% of participants. Single-cell analysis of 17,158 CD8+ T cells revealed that the responding tumors had clonally expanded putative tumor-specific exhausted CD8+ TILs with a tissue-resident memory program, characterized by high cytotoxic potential (CTX+) and ZNF683 expression. Five weeks after therapy, the effect was consistent with the activation of the pre-existing CTX+ZNF683+CD8+ TILs and associated with high numbers of CD103+PD-1+CD8+ T cells infiltrating pre-treatment lesions. In non-responders, the absence of ZNF683+CTX+ TILs correlated with the subsequent accumulation of highly exhausted clones. These observations suggest the important role of the pre-existing ZNF683+CTX+ TILs in the primary mechanism of response following neoadjuvant treatment.⁴⁷

Another PD-1 inhibitor, nivolumab, was evaluated in patients with resectable HPV-positive and HPV-negative SCCHN in the phase I/II clinical trial CheckMate 358.⁴⁸ This study included 26 HPV-positive and 26 HPV-negative participants who received nivolumab 240 mg intravenously on days 1 and 15, with surgery scheduled by day 29. Radiographic responses were achieved in only 12.0% of HPV-positive and 8.3% of HPV-negative patients, with pathological responses in 5.9% and 17.6% of participants, respectively. A partial pathological response (pPR) was confirmed in only one HPV-positive patient, with no complete pathological responses (pCR) observed. Despite these modest response rates, treatment-related adverse events of any grade occurred in 73.1% of HPV-positive patients and 53.8% of HPV-negative patients, with grade 3–4 events in 19.2% and 11.5%, respectively.⁴⁸

Several trials also investigated the combination of ICIs with chemotherapy. For example, a phase II clinical trial

evaluated a single dose of durvalumab with or without tremelimumab before resection.⁴⁹ The study enrolled 48 patients, randomized into 2 arms: 24 patients received the combination therapy; and 24 received durvalumab monotherapy. From the entire cohort, 45 underwent surgical resection followed by postoperative chemoradiotherapy or radiotherapy based on multidisciplinary assessment, with 1-year consolidation with durvalumab. Distant recurrence-free survival (DRFS) was significantly better in patients treated with combination therapy as compared to the monotherapy arm. Artificial intelligence-powered analysis demonstrated that combination therapy reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast to monotherapy or cytotoxic chemotherapy. The authors concluded that a single dose of durvalumab with tremelimumab before resection followed by postoperative chemoradiotherapy could benefit patients with resectable head and neck cancers.⁴⁹

In another phase II randomized trial, neoadjuvant nivolumab monotherapy was compared to ICI doublet therapy – ipilimumab plus nivolumab or relatlimab plus nivolumab – for 4 weeks prior to surgery.⁵⁰ Participants were stratified by p16, PD-L1 and lymphocyte-activation gene 3 (LAG-3) expression, assessed with immunohistochemistry. Of the 41 patients enrolled, only 33 were evaluable for analysis (25 with oral cavity cancer, 5 with oropharyngeal cancer, and 3 with laryngeal cancer). In the doublet arms, pathological responses were more frequent (nivolumab/relatlimab: 11/13 and nivolumab/ipilimumab: 6/10) than in the nivolumab monotherapy arm (6/10). The combination arms were also associated with more partial ($>50\%$) or major ($>90\%$) pathological responses than monotherapy. There was no association between the RECIST (Response Evaluation Criteria in Solid Tumors) response, PD-L1 or LAG3 expression and the pathological response in the nivolumab/relatlimab arm; however, more patients with combined positivity had a $>50\%$ response (4 vs. 0). Across the entire trial, there were no serious study drug-related adverse events. The authors highlighted the promising nature of this approach, noting that the trial continues to enroll patients for further evaluation.⁵⁰

Neoadjuvant ICI therapy has also been combined with chemotherapy or other systemic treatment. Toripalimab (a PD-1 inhibitor) in combination with albumin-bound paclitaxel/cisplatin (TTP) was evaluated in a single-arm prospective study (Illuminate Trial) in patients with locally advanced resectable oral squamous cell carcinoma (OSCC).⁵¹ The protocol enrolled 20 patients with clinical stage III or IVA OSCC, who received 2 cycles of chemoimmunotherapy followed by radical surgery and risk-adapted adjuvant (chemo)radiotherapy. All patients underwent microscopically radical surgical procedures (R0) with a low incidence of significant adverse events during neoadjuvant therapy (only 3 patients with grade 3 or 4 events). Major pathological responses (MPRs) were observed in 60% of the clinical group, including 30% with

pCR. A favorable clinical response was associated with positive PD-L1 expression (>10%). The DFS rate was 90% and the OS rate was 95% after 26 months of follow-up.⁵¹

In another single-arm phase II trial, neoadjuvant therapy with 3 cycles of paclitaxel, cisplatin and toripalimab was tested in 27 patients with locally advanced laryngeal/hypopharyngeal squamous cell carcinoma.⁵² After neoadjuvant therapy, participants with a complete or partial response of the primary tumor received concurrent chemoradiation followed by maintenance toripalimab. In other cases, patients underwent surgery followed by adjuvant chemoradiation and maintenance toripalimab. The primary endpoint was the larynx preservation rate at 3 months post-radiation. The overall response rate (ORR) was 85.2%, with an 88.9% post-radiation larynx preservation rate. After 1 year of follow-up, the OS rate was 84.7%, the progression-free survival (PFS) rate was 77.6%, and the larynx preservation rate was 88.7%.⁵²

Despite some promising results in clinical trials, neoadjuvant therapy has not yet been incorporated into clinical practice based on the guidelines published by the European Society for Medical Oncology (ESMO)⁵³ and the National Comprehensive Cancer Network (NCCN).⁵⁴ The comparison of clinical trials focused on the neoadjuvant therapy for SCCHN is presented in Table 1.

Adjuvant immunotherapy after definitive surgery

Definitive surgery, alongside definitive radiotherapy, remains a primary therapeutic modality for head and neck cancers. In many cases, even after radical procedures, patients require adjuvant radiotherapy or chemoradiotherapy.⁵⁵ Adjuvant ICI therapy represents a potential strategy to improve prognosis, prolong DFS and provide an alternative option for platinum-ineligible patients requiring adjuvant treatment.

In an open-label, multi-institutional phase II clinical trial, patients with recurrent, resectable SCCHN received 6 adjuvant nivolumab cycles after salvage surgery.⁵⁶

Adjuvant nivolumab following salvage surgery was well-tolerated and demonstrated improved DFS as compared to historical controls. There was no significant difference in DFS between PD-L1-positive and PD-L1-negative patients; however, there was a non-significant trend toward improved DFS in patients with high tumor mutational burden ($p = 0.083$).⁵⁶

In another phase II trial (ADJORL1), patients with recurrent SCCHN or second primary tumors in the previously irradiated areas underwent surgery with curative intent, followed by adjuvant nivolumab for 6 months.⁵⁷ A 2-year DFS was 46.6%, and a 2-year OS was 67.3%. Severe adverse events were reported in 19% of participants. The authors concluded that the 2-year DFS and OS outcomes were favorable when compared with historical data from reirradiation trials.⁵⁷

In the PATHWay trial, high-risk SCCHN patients who had completed definitive treatment received adjuvant pembrolizumab therapy for 1 year.⁵⁸ ICI therapy improved PFS in 2 subgroups: post-salvage surgery patients (HR (hazard ratio): 0.34; 80% CI (confidence interval): 0.18–0.67; $p = 0.016$); and those with multiple recurrences/primaries (HR : 0.48; 80% CI : 0.27–0.88; $p = 0.057$). Severe adverse events were noted in 6% of participants.⁵⁸

Based on these studies, there appears to be a potential role for ICI therapy in the adjuvant setting after definitive surgery; however, larger, multi-center clinical trials are necessary to confirm these findings. The comparison of clinical trials focused on the adjuvant therapy for SCCHN is presented in Table 2.

Table 2. Clinical trials focusing on adjuvant therapy for squamous cell carcinoma of the head and neck (SCCHN)

Trial identifier	Clinical phase	Tested agent(s)	Key outcomes
NCT03355560	II	nivolumab	improved DFS vs. historical controls
ADJORL1	II	nivolumab	2-year DFS: 46.6%, 2-year OS: 67.3%
PATHWay	II	pembrolizumab	improved PFS in post-salvage surgery and multiple recurrence patients

DFS – disease-free survival; OS – overall survival; PFS – progression-free survival.

Table 1. Clinical trials focusing on neoadjuvant therapy for squamous cell carcinoma of the head and neck (SCCHN)

Trial identifier	Clinical phase	Tested agent(s)	Key outcomes
NCT02296684	II	pembrolizumab	45% substantial pTR
CheckMate 358	I/II	nivolumab	12.0% ORR (HPV+) 8.3% ORR (HPV-)
–	II	durvalumab ± tremelimumab	improved DRFS with combination
NCT04080804	II	ipilimumab + nivolumab/relatlimab + nivolumab	higher pTR with doublet therapy
Illuminate	II	toripalimab + chemotherapy	60% MPR, 30% pCR
INSIGHT	II	toripalimab + chemotherapy	85.2% ORR, 88.9% larynx preservation rate

pTR – pathological tumor response; ORR – overall response rate; HPV – human papillomavirus; DRFS – distant recurrence-free survival; MPR – major pathological response; pCR – pathological complete response.

Immunotherapy in combination with definitive (radical) radiotherapy

Radiation therapy (RT) is an established method for both radical and palliative management of head and neck cancer. Radiation therapy can be administered alone, concomitantly/concurrently, or sequentially after induction chemotherapy. The most common technique is intensity-modulated radiation therapy (IMRT) using contemporary computer-based planning and radiation delivery with or without simultaneous integrated boost (SIB). Radiation therapy may also be considered as adjuvant therapy (with or without chemotherapy) after primary surgical treatment, or in cases where surgery could be harmful or unacceptable to the patient, and for the functional preservation of critical structures such as the larynx.^{59,60}

The current standard of care includes the enhancement of standard RT with concomitant therapy, such as weekly cisplatin and platinum combined with 5-fluorouracil^{61,62} or cetuximab.^{63–66} Induction chemotherapy followed by concurrent chemoradiotherapy may also be considered in cases of advanced locoregional disease.⁶⁷ Despite the availability of multiple clinical options, novel therapeutic approaches could potentially improve prognosis and treatment outcomes. One of the most promising strategies is the application of ICIs before concomitant or concurrent therapy (the neoadjuvant approach).

The phase III JAVELIN Head and Neck 100 trial evaluated adjuvant 12-month avelumab therapy vs. placebo in 697 patients with locally advanced head and neck cancer after definitive cisplatin-based chemoradiotherapy.⁶⁸ The trial was terminated prematurely, as the boundary for futility had been crossed. The initial results showed a *HR* of 1.21 (95% *CI*: 0.93–1.57) and 1.31 (95% *CI*: 0.93–1.85) for PFS and OS, respectively.⁶⁸

Another trial with avelumab, GORTEC-REACH, included 2 patient populations: cisplatin-fit patients who received standard-of-care cisplatin-based chemoradiation; and cisplatin-unfit patients who received weekly cetuximab and avelumab concurrently with radiation.⁶⁹ Both treatment regimens were followed by avelumab for 12 months vs. the standard of care. This trial was also negative, as the primary endpoint of improved PFS was not met for either cohort. The PFS *HR* was 1.27 (95% *CI*: 0.83–1.93) for the cisplatin-fit cohort, and the PFS *HR* at 2 years was 0.85 (*p* = 0.15) for the cisplatin-unfit cohort.⁶⁹

In the KEYNOTE-412 study, adjuvant pembrolizumab added after concurrent cisplatin-based chemoradiotherapy was compared to placebo in 804 patients from 130 medical centers.⁷⁰ Although the trial showed a favorable trend, there was no statistically significant benefit for the pembrolizumab arm (*HR*: 0.83; 95% *CI*: 0.68–1.03). Even in the subpopulation with high PD-L1 expression (CPS \geq 20), neither the median PFS nor OS were reached in either arm. The investigators reported neutropenia,

stomatitis, anemia, dysphagia, lymphopenia, pneumonia, acute kidney injury, and febrile neutropenia as significant adverse events. The authors concluded that the addition of pembrolizumab to chemoradiotherapy did not significantly improve event-free survival (EFS) as compared to placebo in a molecularly unselected locally advanced SCCHN population.⁷⁰

The preliminary results of maintenance nivolumab therapy following definitive chemoradiotherapy showed an encouraging safety profile and some significant improvement in OS and PFS for patients with intermediate-risk HPV-positive oropharyngeal cancer that had spread to nearby tissue or lymph nodes. However, phase III of the EA3161 trial is ongoing.⁷¹ Another ongoing trial, NRG-HN005, will evaluate the effectiveness and safety of de-intensified radiation therapy in combination with cisplatin or immunotherapy with nivolumab in patients with early-stage, HPV-positive, non-smoking-associated oropharyngeal cancer.⁷²

ICI therapy can also be administered as adjuvant treatment after definitive radiotherapy, as demonstrated in the phase III IMvolve010 trial with atezolizumab.⁷³ This study included 406 patients with locally advanced SCCHN (stage IVa or IVb) without disease progression after radical chemoradiotherapy. Participants were randomized to receive 1 year of atezolizumab or placebo. The trial was negative, showing no difference in OS between the arms.⁷³ In contrast, the phase III NIVOPO-STOP GORTEC 2018-01 trial demonstrated statistically significant improvement in DFS in the nivolumab arm as compared to placebo after definitive chemoradiotherapy, although complete data presentation is still pending.⁷⁴ A trial testing the combination of atezolizumab with cetuximab after chemoradiotherapy in high-risk head and neck cancer is currently enrolling participants.⁷⁵ Another approach combines neoadjuvant radiotherapy with ICIs before radical surgical resection.⁷⁶ In the phase II KEYNOTE-689 trial, neoadjuvant pembrolizumab was followed by surgical tumor ablation, and subsequently by postoperative (chemo)radiation. Furthermore, participants with high-risk pathology (positive margins and/or extranodal extension) received adjuvant pembrolizumab. Results were presented as pTR: pTR-0 < 10%; pTR-1 10–49%; and pTR-2 \geq 50%. From the entire study population, 22% of patients had pTR-1, 22% had pTR-2, and none had pTR-3. After 1 year, 16.7% of participants with high-risk pathology experienced disease relapse.⁷⁶ The phase III IMSTAR-HN trial, evaluating nivolumab monotherapy or combined with ipilimumab vs. the standard of care in resectable SCCHN,⁷⁷ and the CompARE trial with durvalumab in patients with intermediate and high-risk oropharyngeal cancer⁷⁸ are currently randomizing participants. The comparison of clinical trials focused on immunotherapy in combination with definitive (radical) radiotherapy for SCCHN is presented in Table 3.

Table 3. Clinical trials focusing on immunotherapy in combination with definitive (radical) radiotherapy for squamous cell carcinoma of the head and neck (SCCHN)

Trial identifier	Clinical phase	Tested agent(s)	Key outcomes
JAVELIN Head and Neck 100	III	avelumab	negative for PFS and OS improvement
GORTEC-REACH	III	avelumab	negative for PFS improvement
KEYNOTE-412	III	pembrolizumab	negative for EFS improvement
EA3161	II/III	nivolumab	ongoing preliminary positive signal
NRG-HN005	III	nivolumab	ongoing
IMvolve010	III	atezolizumab	negative for OS improvement
NIVOPOSTOP GORTEC 2018-01	III	nivolumab	significant DFS improvement (full data pending)
KEYNOTE-689	II	pembrolizumab	22% pTR-1, 22% pTR-2, 16.7% relapse at 1 year in high-risk patients
IMSTAR-HN	III	nivolumab ± ipilimumab	ongoing
CompARE	II	durvalumab	ongoing

EFS – event-free survival.

ICI therapy in metastatic or relapsed head and neck cancer

ICI therapy in the treatment of recurrent/metastatic (R/N) head and neck cancer has established a position in routine clinical practice, as confirmed by the guidelines of ESMO⁵³ and NCCN.⁵⁴ Multiple clinical trials have led to the routine evaluation of PD-L1 expression through CPS, defined as the number of PD-L1-positive cells (tumor cells, lymphocytes and macrophages) divided by the total number of tumor cells, multiplied by 100.

The initial investigation was the phase Ib KEYNOTE-012 trial, which first suggested the manageable toxicity and promising anti-tumor activity of pembrolizumab in patients with R/N SCCHN.⁷⁹ Subsequently, the single-arm phase II KEYNOTE-055 study evaluated pembrolizumab therapy in 171 patients (CPS \geq 50 in 48 patients) with R/N SCCHN refractory to platinum-based therapy and cetuximab.⁸⁰ Of these patients, 82% were PD-L1-positive and 22% were HPV-positive. The ORR was 16%, with a median duration of response (DoR) of 8 months. The median PFS was 2.1 months, and OS was 8 months. Adverse events occurred in 64% of patients, but only 15% experienced grade 3 or higher events, with fatigue, hypothyroidism, nausea, and increased aspartate aminotransferase (AST) being most common. Statistical analysis revealed that HPV-positive patients demonstrated higher 6-month OS (72%) as compared to 55% in the HPV-negative subgroup; however, ORR and PFS were similar. The ORR was associated with the PD-L1 expression status (18% for CPS \geq 1 and 27% for CPS \geq 50).⁸⁰

Following these preliminary findings, pembrolizumab demonstrated its value in the phase III KEYNOTE-048 trial.⁸¹ According to the protocol, participants were randomized to 3 arms: pembrolizumab monotherapy; pembrolizumab with platinum and 5-fluorouracil; or cetuximab

with platinum and 5-fluorouracil (standard of care). Statistical analysis was stratified by PD-L1 expression defined by CPS. In the population with CPS \geq 20, pembrolizumab monotherapy was associated with improved median OS as compared to cetuximab with chemotherapy (14.9 months vs. 10.7 months, *HR*: 0.61; 95% *CI*: 0.45–0.83; *p* = 0.0007). Furthermore, pembrolizumab with chemotherapy improved OS vs. cetuximab with chemotherapy in the total population (13.0 months vs. 10.7 months, *HR*: 0.77; 95% *CI*: 0.63–0.93; *p* = 0.0034), irrespective of CPS. The final analysis showed 2 populations that benefited from pembrolizumab therapy: those with CPS \geq 20 (14.7 months vs. 11.0 months, *HR*: 0.60; 95% *CI*: 0.45–0.82; *p* = 0.0004); and those with CPS \geq 1 (13.6 months vs. 10.4 months, *HR*: 0.65; 95% *CI*: 0.53–0.80; *p* < 0.0001). Despite these survival benefits, neither pembrolizumab alone nor pembrolizumab with chemotherapy improved PFS. Severe adverse events were reported in 55% of the pembrolizumab monotherapy arm, 85% of the pembrolizumab with chemotherapy arm, and 83% of the cetuximab with chemotherapy group.⁸¹ The KEYNOTE-048 trial led to change in the standard of care, and pembrolizumab in monotherapy or in combination with chemotherapy are now accepted regimens in the therapy of PD-L1-positive (CPS \geq 1) R/N SCCHN.^{53,54}

Nivolumab was approved for the second-line treatment of platinum-refractory R/N SCCHN based on the phase III CheckMate 141 trial.⁸² Ferris et al. enrolled 361 subjects who were randomized to receive either nivolumab or standard treatment (methotrexate, docetaxel or cetuximab). The nivolumab arm demonstrated higher median OS (7.5 months vs. 5.1 months) with a better safety profile (severe adverse events: 13.1% vs. 35.1%), irrespective of PD-L1 expression (<1% or \geq 1%).⁸²

Durvalumab therapy in a phase Ib/IIa study of immunotherapy-naïve patients who had previously received platinum-containing regimens was well-tolerated⁸³ and led to further clinical trials. For example, the phase II HAWK

study focused on a population with high PD-L1 expression ($\geq 25\%$) with platinum-refractory R/N SCCHN.⁸⁴ Patients received durvalumab monotherapy for up to 12 months. The median PFS and OS were 2.1 months and 7.1 months, respectively. At the endpoint, the PFS and OS rates were 14.6% (95% CI: 8.5–22.1) and 33.6% (95% CI: 24.8–42.7), respectively. Severe adverse events were noted in 8.0% of patients. The authors concluded that durvalumab demonstrated anti-tumor activity with acceptable safety in PD-L1-high patients with R/N SCCHN, although further phase III trials are needed. The subsequent analysis showed higher ORR (29.4% vs. 10.9%) and longer OS (10.2 months vs. 5.0 months) with durvalumab in HPV-positive patients.⁸⁴

The addition of tremelimumab (anti-CTLA-4) to durvalumab therapy in the phase II CONDOR study⁸⁵ and in the phase III randomized open-label EAGLE study⁸⁶ did not demonstrate significant differences in ORR, OS, PFS, or DoR in patients with R/N SCCHN. Similarly, the CheckMate 651 trial compared ipilimumab plus nivolumab to cetuximab plus cisplatin/carboplatin plus fluorouracil (EXTREME regimen) followed by cetuximab maintenance in the first-line therapy of R/N SCCHN.⁸⁷ This study was also negative, with no statistically significant differences in the median OS in the total population (13.9 months vs. 13.5 months, *HR*: 0.95; 97.9% CI: 0.80–1.13; *p* = 0.4951) or in the CPS ≥ 20 population (17.6 months vs. 14.6 months, *HR*: 0.78; 97.51% CI: 0.59–1.03; *p* = 0.0469). The PFS (5.4 months vs. 7.0 months) and ORR (34.1% vs. 36.0%) were also similar between the treatment arms.⁸⁷

The combination of ipilimumab and nivolumab was further tested in CheckMate 714 for the treatment of R/N SCCHN.⁸⁸ Participants were randomized 2:1 to receive nivolumab plus ipilimumab or nivolumab plus placebo for up to 2 years or until disease progression, unacceptable toxicity or consent withdrawal. The ORR for platinum-refractory therapy in the doublet therapy arm was 13.2% (95% CI: 8.4–19.5) as compared to 18.3% in the monotherapy

arm (95% CI: 10.6–28.4) (*p* = 0.290). The median DoR for nivolumab plus ipilimumab was not reached vs. 11.1 months for nivolumab alone. In patients with platinum-eligible disease, ORRs were 20.3% vs. 29.5%. The incidence of severe adverse events was similar – 15.8% for ipilimumab-nivolumab vs. 14.6% for nivolumab. The study did not meet its primary endpoint of demonstrating an ORR benefit with first-line ipilimumab-nivolumab therapy in platinum-refractory R/M SCCHN.⁸⁸

Another ICI, avelumab, was evaluated in the JAVELIN Solid Tumor phase Ib trial in patients with platinum-refractory/ineligible R/M SCCHN, and demonstrated safety and modest clinical activity.⁸⁹

The comparison of clinical trials focused on immunotherapy for metastatic or relapsed SCCHN is presented in Table 4.

Future perspectives

ICI therapy in head and neck cancer represents a promising frontier in improving patient outcomes. Recent advancement points to several emerging strategies that may enhance the efficacy of current approaches. The phase III LEAP-010 study evaluated pembrolizumab and lenvatinib (anti-LAG) for R/N SCCHN.⁹⁰ Patients were randomized to receive either pembrolizumab 200 mg plus placebo (control) or pembrolizumab plus lenvatinib 20 mg daily (experimental group). Treatment continued for up to 35 cycles or until intolerable toxicity, progression or withdrawal. The median PFS (6.2 months vs. 2.8 months, *p* = 0.0001040) and ORR (46.1% vs. 25.4%, *p* = 0.0000251) were significantly improved in the experimental arm at the first interim analysis. However, the second interim analysis showed no significant difference in the median OS (15.0 months vs. 17.9 months, *p* = 0.882). The rate of severe adverse events was higher in the experimental arm (28% vs. 8%).⁹⁰

Table 4. Clinical trials focusing on immunotherapy for metastatic or relapsed squamous cell carcinoma of the head and neck (SCCHN)

Trial identifier	Clinical phase	Tested agent(s)	Key outcomes
KEYNOTE-012	Ib	pembrolizumab	manageable toxicity, promising activity
KEYNOTE-055	II	pembrolizumab	ORR: 16%, median OS: 8 months
KEYNOTE-048	III	pembrolizumab \pm chemotherapy	improved OS in CPS ≥ 1 and CPS ≥ 20
CheckMate 141	III	nivolumab	improved OS vs. standard therapy (7.5 months vs. 5.1 months)
HAWK	II	durvalumab	median OS: 7.1 months in PD-L1-high patients
CONDOR	II	tremelimumab + durvalumab	no significant benefit over monotherapy
EAGLE	III	tremelimumab + durvalumab	no significant benefit over monotherapy
CheckMate 651	III	ipilimumab + nivolumab	no OS advantage over the EXTREME regimen
CheckMate 714	II	ipilimumab \pm nivolumab	no ORR advantage with combination
JAVELIN Solid Tumor	Ib	avelumab	demonstrated safety, modest activity

CPS – combined positive score; PD-L1 – programmed death ligand-1.

The phase II LEAP-009 study demonstrated promising efficacy and safety for the lenvatinib and pembrolizumab combination in R/M SCCHN, which progressed after platinum and immunotherapy.⁹¹ Other potential enhancers of ICI therapy in the first-line R/M SCCHN treatment include the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib,⁹² the bifunctional EGFR/tumor growth factor beta (TGF- β) inhibitor BCA101,⁹³ the multi-kinase inhibitor zanzalintinib,⁹⁴ and recombinant IL-2 bempagaldesleukin.⁹⁵ Collectively, these findings point to the next generation of clinical trials in SCCHN, focusing on combining targeted therapies with ICIs.

Improved patient outcomes may also result from the neoadjuvant applications of immune checkpoint blockade (ICB). Recent studies suggest that applying ICB in the neoadjuvant setting could potentially promote systemic anti-tumor immunity, although further research is needed.⁹⁶ Combination therapy with other immune-stimulating molecules often yields more successful outcomes than PD-1 inhibitor monotherapy in SCCHN. A recent systematic review and meta-analysis of 7 phase I, II and III trials revealed that combination therapy significantly improved ORR and 1-year OS in HPV-negative R/N SCCHN as compared to anti-PD-1 monotherapy; however, this benefit was not observed in HPV-positive cases.⁹⁷

The indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor epacadostat is still being investigated for potential PFS benefits when combined with pembrolizumab.⁹⁸ Previously, epacadostat was evaluated in combination with PD-1 inhibitors in advanced solid tumors, demonstrating a tolerable safety profile and a relatively high ORR in the ECHO-304/KEYNOTE-669 study.⁹⁹ Another IDO1 inhibitor, navoximod, was tested in combination with atezolizumab in a phase I trial for patients with solid tumors, showing a favorable safety profile, but inconclusive efficacy results.¹⁰⁰

According to the SCORES study, the STAT3 inhibitor danvatirsen (AZD9150) demonstrated safety for use in combination with PD-1 inhibitors.¹⁰¹ The study also indicated potential anti-tumor activity of ICIs, with additional trials currently in progress.^{102–104} The most promising future directions are presented in Fig. 1.

An inherent limitation of our review is the presence of ongoing clinical trials that may ultimately alter the

paradigm of systemic therapy for head and neck cancer. Although several of these studies are discussed above, many currently report only partial or interim results.

Conclusions

Immunotherapy has been integrated into everyday clinical practice for metastatic or relapsed SCCHN, as confirmed by the ESMO and NCCN guidelines.^{53,54} Other applications of ICIs in the management of SCCHN remain under development, with ongoing research focused on optimizing their efficacy and safety. In contrast, the inhibitors of the PD-1/PD-L1 pathway – most notably pembrolizumab and nivolumab – have demonstrated substantial clinical benefit in R/M SCCHN, and have therefore been incorporated into standard treatment algorithms. The role of CTLA-4 inhibitors, whether as monotherapy or in combination with PD-1/PD-L1 inhibitors, is less well established, but remains an active area of investigation.

The neoadjuvant and adjuvant use of ICIs has shown encouraging preliminary results in early-phase trials; however, larger randomized studies are required before these strategies can be adopted into routine clinical practice. Similarly, the combination of ICIs with definitive radiotherapy has produced mixed outcomes, with some trials demonstrating benefits, while others have failed to meet their primary endpoints.

Future directions in the field include the development of novel combination strategies incorporating targeted therapies, the identification of predictive biomarkers beyond PD-L1 expression, the design of immunotherapy approaches tailored to HPV-positive vs. HPV-negative disease, and the optimization of treatment sequencing and duration. As understanding of tumor immunology and the mechanisms underlying response and resistance to immunotherapy continues to advance, the therapeutic landscape for SCCHN is expected to further evolve, with the potential to improve outcomes in this challenging disease.¹⁰⁵

Ethics approval and consent to participate

Not applicable.

Data availability

Not applicable.

Consent for publication

Not applicable.

Use of AI and AI-assisted technologies

Not applicable.

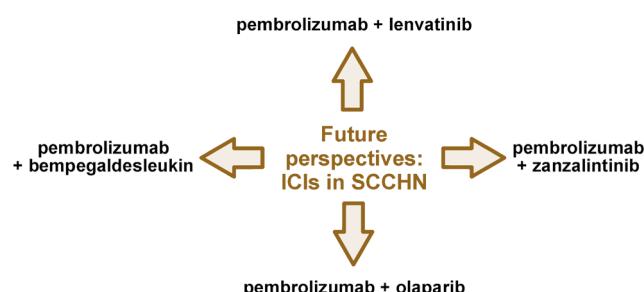


Fig. 1. Immune checkpoint inhibitors (ICIs) for squamous cell carcinoma of the head and neck (SCCHN): Future perspectives

ORCID iDs

Marcin Sokołowski <https://orcid.org/0009-0007-9957-5988>
 Magdalena Chrząszcz <https://orcid.org/0009-0000-3606-2789>
 Aleksandra Butrym <https://orcid.org/0000-0002-8199-2018>

References

- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2024;74(3):229–263. doi:10.3322/caac.21834
- Johnson DE, Burtress B, Leemans CR, Lui VVY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. *Nat Rev Dis Primers.* 2020;6(1):92. doi:10.1038/s41572-020-00224-3
- Alfouzan AF. Head and neck cancer pathology: Old World versus New World disease. *Niger J Clin Pract.* 2019;22(1):1–8. doi:10.4103/njcp.njcp_310_18
- Hashibe M, Brennan P, Chuang SC, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: Pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. *Cancer Epidemiol Biomarkers Prev.* 2009;18(2):541–550. doi:10.1158/1055-9965.EPI-08-0347
- Alsahafi E, Begg K, Amelio I, et al. Clinical update on head and neck cancer: Molecular biology and ongoing challenges. *Cell Death Dis.* 2019;10(8):540. doi:10.1038/s41419-019-1769-9
- Taberna M, Mena M, Pavón MA, Alemany L, Gillison ML, Mesía R. Human papillomavirus-related oropharyngeal cancer. *Ann Oncol.* 2017;28(10):2386–2398. doi:10.1093/annonc/mdx304
- Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. *N Engl J Med.* 2010;363(1):24–35. doi:10.1056/NEJMoa0912217
- Fernandes Q, Merhi M, Raza A, et al. Role of Epstein–Barr virus in the pathogenesis of head and neck cancers and its potential as an immunotherapeutic target. *Front Oncol.* 2018;8:257. doi:10.3389/fonc.2018.00257
- Trivic A, Milovanovic J, Kablar D, et al. Friend or foe? Exploring the role of cytomegalovirus (HCMV) infection in head and neck tumors. *Biomedicines.* 2024;12(4):872. doi:10.3390/biomedicines12040872
- Cadoni G, Boccia S, Petrelli L, et al. A review of genetic epidemiology of head and neck cancer related to polymorphisms in metabolic genes, cell cycle control and alcohol metabolism. *Acta Otorhinolaryngol Ital.* 2012;32(1):1–11. PMID:22500060. PMCID:PMC3324962.
- Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. *Nat Rev Cancer.* 2011;11(1):9–22. doi:10.1038/nrc2982
- Chen SH, Hsiao SY, Chang KY, Chang JY. New insights into oral squamous cell carcinoma: From clinical aspects to molecular tumorigenesis. *Int J Mol Sci.* 2021;22(5):2252. doi:10.3390/ijms22052252
- Gasche JA, Goel A. Epigenetic mechanisms in oral carcinogenesis. *Future Oncol.* 2012;8(11):1407–1425. doi:10.2217/fon.12.138
- Banithia R, Jain P, Jain AK, Belludi SA, Agarwal N, Patidar M. Evaluation of the association between periodontal disease and total cancer risk: A cross-sectional study. *Dent Med Probl.* 2024;61(6):843–850. doi:10.17219/dmp/175001
- Minervini G, Shivakumar S, Ronsivalle V, Franco R, Cicciù M, Marrapodi MM. Microbiological aspects of cancer progression: A systematic review conducted according to the PRISMA 2020 guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. *Dent Med Probl.* 2024;61(5):739–746. doi:10.17219/dmp/183712
- Beristain-Colorado MdP, Castro-Gutiérrez MEM, Torres-Rosas R, et al. Application of neural networks for the detection of oral cancer: A systematic review. *Dent Med Probl.* 2024;61(1):121–128. doi:10.17219/dmp/159871
- Ambrosini-Spaltro A, Limarzi F, Gaudio M, Calpona S, Meccariello G. PD-L1 expression in head and neck carcinoma by combined positive score: A comparison among preoperative biopsy, tumor resection, and lymph node metastasis. *Virchows Arch.* 2022;481(1):93–99. doi:10.1007/s00428-022-03322-7
- De Keukeleire SJ, Vermassen T, Deron P, et al. Concordance, correlation, and clinical impact of standardized PD-L1 and TIL scoring in SCCHN. *Cancers (Basel).* 2022;14(10):2431. doi:10.3390/cancers14102431
- Smyth MJ, Teng MWI. 2018 Nobel Prize in physiology or medicine. *Clin Transl Immunology.* 2018;7(12):e1041. doi:10.1002/cti2.1041
- Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. *EMBO J.* 1992;11(11):3887–3895. doi:10.1002/j.1460-2075.1992.tb05481.x
- Nishimura H, Minato N, Nakano T, Honjo T. Immunological studies on PD-1 deficient mice: Implication of PD-1 as a negative regulator for B cell responses. *Int Immunopharmacol.* 1998;10(10):1563–1573. doi:10.1093/intimm/10.10.1563
- Butte MJ, Peña-Cruz V, Kim MJ, Freeman GJ, Sharpe AH. Interaction of human PD-L1 and B7-1. *Mol Immunol.* 2008;45(12):3567–3572. doi:10.1016/j.molimm.2008.05.014
- Kinter AL, Godbout EJ, McNally JP, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. *J Immunol.* 2008;181(10):6738–6746. doi:10.4049/jimmunol.181.10.6738
- Szlasa WK, Sauer NJ, Karwacki J, et al. Avelumab reduces STAT3 expression with effects on IL-17RA and CD15. *Dent Med Probl.* 2024;61(4):713–720. doi:10.17219/dmp/176374
- Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. *Immunity.* 2004;20(3):337–347. doi:10.1016/s1074-7613(04)00051-2
- Neel BG, Gu H, Pao L. The 'Sh'ping news: SH2 domain-containing tyrosine phosphatases in cell signaling. *Trends Biochem Sci.* 2003;28(6):284–293. doi:10.1016/S0968-0004(03)00091-4
- Nurieva RI, Liu X, Dong C, Yin-Yang of costimulation: Crucial controls of immune tolerance and function. *Immunol Rev.* 2009;229(1):88–100. doi:10.1111/j.1600-065X.2009.00769.x
- Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. *FEBS Lett.* 2004;574(1–3):37–41. doi:10.1016/j.febslet.2004.07.083
- Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. *Mol Cell Biol.* 2005;25(21):9543–9553. doi:10.1128/MCB.25.21.9543-9553.2005
- Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. *J Exp Med.* 2000;192(7):1027–1034. doi:10.1084/jem.192.7.1027
- Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. *Nat Med.* 1999;5(12):1365–1369. doi:10.1038/70932
- Yamazaki T, Nicolaes GA, Sørensen KW, Dahlbäck B. Molecular basis of quantitative factor V deficiency associated with factor V R2 haplotype. *Blood.* 2002;100(7):2515–2521. doi:10.1182/blood.2002.100.7.2515
- Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. *Nat Immunol.* 2001;2(3):261–268. doi:10.1038/85330
- Messal N, Mameissier E, Sylvain A, et al. Differential role for CD277 as a co-regulator of the immune signal in T and NK cells. *Eur J Immunol.* 2011;41(12):3443–3454. doi:10.1002/eji.201141404
- Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. *Signal Transduct Target Ther.* 2023;8(1):320. doi:10.1038/s41392-023-01522-4
- Allison JP, McIntyre BW, Bloch D. Tumor-specific antigen of murine T-lymphoma defined with monoclonal antibody. *J Immunol.* 1982;129(5):2293–2300. PMID:6181166.
- Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. *Science.* 1996;271(5256):1734–1736. doi:10.1126/science.271.5256.1734
- Rengasamy G, Kasirajan HS, Veeraraghavan VP, Ramani P, Cervino G, Minervini G. Salivary cytokines as a biomarker for diagnosis, prognosis and treatment of oral squamous cell carcinoma: A systematic review. *Dent Med Probl.* 2025;62(2):351–359. doi:10.17219/dmp/186664
- Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. *Lancet Oncol.* 2017;18(12):e718–e741. doi:10.1016/S1470-2045(17)30607-1
- Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4. *Science.* 1998;282(5397):2263–2266. doi:10.1126/science.282.5397.2263

41. Chen J, Ganguly A, Mucsi AD, et al. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy. *J Exp Med.* 2017;214(2):327–338. doi:10.1084/jem.20160620
42. Lipson EJ, Drake CG. Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. *Clin Cancer Res.* 2011;17(22):6958–6962. doi:10.1158/1078-0432.CCR-11-1595
43. Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab. *Semin Oncol.* 2010;37(5):450–454. doi:10.1053/j.seminoncol.2010.09.010
44. Hoffmann F, Franzen A, de Vos L, et al. CTLA4 DNA methylation is associated with CTLA-4 expression and predicts response to immunotherapy in head and neck squamous cell carcinoma. *Clin Epigenetics.* 2023;15(1):112. doi:10.1186/s13148-023-01525-6
45. Oliveira G, Egloff AM, Afeyan AB, et al. Preexisting tumor-resident T cells with cytotoxic potential associate with response to neoadjuvant anti-PD-1 in head and neck cancer. *Sci Immunol.* 2023;8(87):eadf4968. doi:10.1126/sciimmunol.adf4968
46. He X, Lei X, Cheng Y, Zhu H. Neoadjuvant chemotherapy vs upfront surgery for resectable locally advanced oral squamous cell carcinoma: A retrospective single center study. *Adv Clin Exp Med.* 2025;34(8):1307–1319. doi:10.17219/acem/192623
47. ClinicalTrials.gov. Washington University School of Medicine. Immunotherapy with MK-3475 in surgically resectable head and neck squamous cell carcinoma. Identifier: NCT02296684. <https://clinicaltrials.gov/study/NCT02296684>. Accessed April 11, 2025.
48. Ferris RL, Spanos WC, Leidner R, et al. Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial. *J Immunother Cancer.* 2021;9(6):e002568. doi:10.1136/jitc-2021-002568
49. Kim CG, Hong MH, Kim D, et al. A phase II open-label randomized clinical trial of preoperative durvalumab or durvalumab plus tremelimumab in resectable head and neck squamous cell carcinoma. *Clin Cancer Res.* 2024;30(8):2097–2110. doi:10.1158/1078-0432.CCR-23-3249
50. Ferris RL, Gooding WE, Chiosea SI, et al. Neoadjuvant nivolumab alone or in combination with relatlimab or ipilimumab in resectable head and neck squamous cell carcinoma (HNSCC). *J Clin Oncol.* 2023;41(Suppl 16):6018. doi:10.1200/JCO.2023.41.16_suppl.6018
51. Huang Y, Sun J, Li J, et al. Neoadjuvant immunochemotherapy for locally advanced resectable oral squamous cell carcinoma: A prospective single-arm trial (Illuminate Trial). *Int J Surg.* 2023;109(8):2220–2227. doi:10.1097/JSS.0000000000000489
52. Ou X, Zhai R, Wei W, et al. Induction toripalimab and chemotherapy for organ preservation in locally advanced laryngeal and hypopharyngeal cancer: A single-arm phase II clinical trial. *Clin Cancer Res.* 2024;30(2):344–355. doi:10.1158/1078-0432.CCR-23-2398
53. Machiels JP, Leemans CR, Golusinski W, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2020;31(11):1462–1475. doi:10.1016/j.annonc.2020.07.011
54. Colevas AD, Cmelak AJ, Pfister DG, et al. NCCN Guidelines® insights: Head and Neck Cancers, Version 2.2025. *J Natl Compr Canc Netw.* 2025;23(1):2–11. doi:10.6004/jnccn.2025.0007
55. Korczagin GG, Teixeira GV, Shaha A. Postoperative adjuvant chemoradiotherapy versus postoperative adjuvant radiotherapy for head and neck squamous cell carcinoma with adverse pathology: A systematic review and meta-analysis. *Braz J Otorhinolaryngol.* 2025;91(1):101516. doi:10.1016/j.bjorl.2024.101516
56. Leddon JL, Gulati S, Haque S, et al. Phase II trial of adjuvant nivolumab following salvage resection in patients with recurrent squamous cell carcinoma of the head and neck. *Clin Cancer Res.* 2022;28(16):3464–3472. doi:10.1158/1078-0432.CCR-21-4554
57. Guerlain J, Cozic N, Daste A, et al. Adjuvant immunotherapy after salvage surgery in head and neck cancer squamous cell carcinoma (HNSCC): Phase II trial evaluating the efficacy and the toxicity of nivolumab (ADJORL1). *Ann Oncol.* 2023;34(Suppl 2):S557. doi:10.1016/j.annonc.2023.09.2001
58. Pearson AT, Seiwert TY, Cohen RB, et al. A randomized, double-blind, placebo-controlled phase II study of adjuvant pembrolizumab versus placebo in patients with head and neck squamous cell cancers at high risk for recurrence: the PATHWay study. *J Clin Oncol.* 2024;42(16):6008. doi:10.1200/JCO.2024.42.16_suppl.6008
59. Lucas B, Bourhis J, Overgaard J, et al. Role of radiotherapy fractionation in head and neck cancers (MARCH): An updated meta-analysis. *Lancet Oncol.* 2017;18(9):1221–1237. doi:10.1016/S1470-2045(17)30458-8
60. Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – a systematic review and meta-analysis. *Radiother Oncol.* 2011;100(1):22–32. doi:10.1016/j.radonc.2011.03.004
61. Nguyen-Tan PF, Zhang Q, Ang KK, et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: Long-term report of efficacy and toxicity. *J Clin Oncol.* 2014;32(34):3858–3866. doi:10.1200/JCO.2014.55.3925
62. Denis F, Garaud P, Bardet E, et al. Final results of the 94-01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. *J Clin Oncol.* 2004;22(1):69–76. doi:10.1200/JCO.2004.08.021
63. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. *N Engl J Med.* 2006;354(6):567–578. doi:10.1056/NEJMoa053422
64. Mehanna H, Robinson M, Hartley A, et al.; De-ESCALaTE HPV Trial Group. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): An open-label randomised controlled phase 3 trial. *Lancet.* 2019;393(10166):51–60. doi:10.1016/S0140-6736(18)32752-1
65. Gillison ML, Trott AM, Harris J, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): A randomised, multicentre, non-inferiority trial. *Lancet.* 2019;393(10166):40–50. doi:10.1016/S0140-6736(18)32779-X
66. Ang KK, Zhang Q, Rosenthal DI, et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. *J Clin Oncol.* 2014;32(27):2940–2950. doi:10.1200/JCO.2013.53.5633
67. Budach W, Bölk E, Kammers K, et al. Induction chemotherapy followed by concurrent radio-chemotherapy versus concurrent radio-chemotherapy alone as treatment of locally advanced squamous cell carcinoma of the head and neck (HNSCC): A meta-analysis of randomized trials. *Radiother Oncol.* 2016;118(2):238–243. doi:10.1016/j.radonc.2015.10.014
68. Yu Y, Lee NY. JAVELIN Head and Neck 100: A phase III trial of avelumab and chemoradiation for locally advanced head and neck cancer. *Future Oncol.* 2019;15(7):687–694. doi:10.2217/fon-2018-0405
69. Bourhis J, Tao Y, Sun X, et al. Avelumab–cetuximab–radiotherapy versus standards of care in patients with locally advanced squamous-cell carcinoma of head and neck (LA-SCCHN): Randomized phase III GORTEC-REACH trial. *Ann Oncol.* 2021;32(Suppl 5):S1283. doi:10.1016/j.annonc.2021.08.2112
70. Machiels JP, Tao Y, Licitra L, et al.; KEYNOTE-412 Investigators. Pembrolizumab plus concurrent chemoradiotherapy versus placebo plus concurrent chemoradiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck (KEYNOTE-412): A randomised, double-blind, phase 3 trial. *Lancet Oncol.* 2024;25(5):572–587. doi:10.1016/S1470-2045(24)00100-1
71. Eastern Cooperative Oncology Group – American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group. Testing immunotherapy versus observation in patients with HPV throat cancer. Identifier: EA3161. <https://ecog-acrin.org/clinical-trials/ea3161-throat-cancer>. Accessed April 11, 2025.
72. Yom SS, Harris J, Caudell JJ, et al. Interim futility results of NRG-HN005, a randomized, phase II/III non-inferiority trial for non-smoking p16+ oropharyngeal cancer patients. *Int J Radiat Oncol Biol Phys.* 2024;120(2 Suppl):S2–S3. doi:10.1016/j.ijrobp.2024.08.014
73. Wong DJ, Fayette J, Teixeira M, et al. IMvive010: A phase III, double-blind randomized trial of atezolizumab (atezo) after definitive local therapy vs placebo in patients (pts) with high-risk locally advanced (LA) squamous cell carcinoma of the head and neck (SSCHN). *Cancer Res.* 2024;84(7):CT009. doi:10.1158/1538-7445.AM2024-CT009

74. GORTEC. News release: GORTEC announces new trial success for head and neck cancer treatment. January 7, 2025. <https://www.prnewswire.com/news-releases/gortec-announces-new-trial-success-for-head-and-neck-cancer-treatment-302344120.html>. Accessed January 8, 2025.

75. ClinicalTrials.gov. Testing docetaxel-cetuximab or the addition of an immunotherapy drug, atezolizumab, to the usual chemotherapy and radiation therapy in high-risk head and neck cancer. Identifier: NCT01810913. <https://clinicaltrials.gov/study/NCT01810913>. Accessed April 11, 2025.

76. Uppaluri R, Campbell KM, Egloff AM, et al. Neoadjuvant and adjuvant pembrolizumab in resectable locally advanced, human papillomavirus-unrelated head and neck cancer: A multicenter, phase II trial. *Clin Cancer Res.* 2020;26(19):5140–5152. doi:10.1158/1078-0432.CCR-20-1695

77. Zech HB, Moeckelmann N, Boettcher A, et al. Phase III study of nivolumab alone or combined with ipilimumab as immunotherapy versus standard of care in resectable head and neck squamous cell carcinoma. *Future Oncol.* 2020;16(36):3035–3043. doi:10.2217/fon-2020-0595

78. ClinicalTrials.gov. University of Birmingham, AstraZeneca, Cancer Trials Ireland. CompARE: Escalating treatment of intermediate and high-risk oropharyngeal cancer (OPC). Identifier: NCT04116047. <https://clinicaltrials.gov/study/NCT04116047>. Accessed April 11, 2025.

79. Chow LQM, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: Results from the phase Ib KEYNOTE-012 expansion cohort. *J Clin Oncol.* 2016;34(32):3838–3845. doi:10.1200/JCO.2016.68.1478

80. Baum J, Seiwert TY, Pfister DG, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: Results from a single-arm, phase II study. *J Clin Oncol.* 2017;35(14):1542–1549. doi:10.1200/JCO.2016.70.1524

81. Burtress B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. *Lancet.* 2019;394(10212):1915–1928. doi:10.1016/S0140-6736(19)32591-7

82. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. *N Engl J Med.* 2016;375(19):1856–1867. doi:10.1056/NEJMoa1602252

83. Aggarwal C, Saba NF, Algazi A, et al. Safety and efficacy of MEDI0457 plus durvalumab in patients with human papillomavirus-associated recurrent/metastatic head and neck squamous cell carcinoma. *Clin Cancer Res.* 2023;29(3):560–570. doi:10.1158/1078-0432.CCR-22-1987

84. Zandberg DP, Algazi AP, Jimeno A, et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. *Eur J Cancer.* 2019;107:142–152. doi:10.1016/j.ejca.2018.11.015

85. Han X, Zhang H, Sun K, et al. Durvalumab with or without tremelimumab for patients with recurrent or metastatic squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. *Front Immunol.* 2024;14:1302840. doi:10.3389/fimmu.2023.1302840

86. Ferris RL, Haddad R, Even C, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. *Ann Oncol.* 2020;31(7):942–950. doi:10.1016/j.annonc.2020.04.001

87. Haddad RI, Harrington K, Tahara M, et al. Nivolumab plus ipilimumab versus EXTREME regimen as first-line treatment for recurrent/metastatic squamous cell carcinoma of the head and neck: The final results of CheckMate 651. *J Clin Oncol.* 2023;41(12):2166–2180. doi:10.1200/JCO.22.00332

88. Harrington KJ, Ferris RL, Gillison M, et al. Efficacy and safety of nivolumab plus ipilimumab vs nivolumab alone for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck: The phase 2 CheckMate 714 randomized clinical trial. *JAMA Oncol.* 2023;9(6):779–789. doi:10.1001/jamaoncol.2023.0147

89. Guigay J, Lee KW, Patel MR, et al. Avelumab for platinum-ineligible/refractory recurrent and/or metastatic squamous cell carcinoma of the head and neck: Phase Ib results from the JAVELIN Solid Tumor trial. *J Immunother Cancer.* 2021;9(10):e002998. doi:10.1136/jitc-2021-002998

90. Licitra L, Tahara M, Harrington K, et al. Pembrolizumab with or without lenvatinib as first-line therapy for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC): phase 3 LEAP-010 study. *Int J Radiat Oncol Biol Phys.* 2024;118(5):e2–e3. doi:10.1016/j.ijrobp.2024.01.016

91. Harrington K, Kim HR, Salas S, et al. Lenvatinib ± pembrolizumab versus chemotherapy for recurrent/metastatic head and neck squamous cell carcinoma that progressed after platinum and immunotherapy: The phase 2 LEAP-009 study. *Int J Radiat Oncol Biol Phys.* 2024;118(5):e42. doi:10.1016/j.ijrobp.2024.01.095

92. Oppelt P, Ley J, Liu J, Adkins D. Olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, in combination with pembrolizumab and carboplatin as first-line treatment of recurrent or metastatic head and neck squamous-cell carcinoma: A single-arm, phase 2 trial. *Int J Radiat Oncol Biol Phys.* 2024;118(5):e42–e43. doi:10.1016/j.ijrobp.2024.01.096

93. Hanna GJ, Kaczmar J, Zandberg DP, et al. Updated dose expansion results of a phase 1/1b study of the bifunctional EGFR/TGF β inhibitor BCA101 with pembrolizumab in patients with recurrent, metastatic head and neck squamous cell carcinoma. *Int J Radiat Oncol Biol Phys.* 2024;118(5):e88. doi:10.1016/j.ijrobp.2024.01.194

94. Saba NF, Harrington K, Licitra L, et al. Zanzalintinib plus pembrolizumab versus pembrolizumab alone in patients with PD-L1 positive metastatic head and neck squamous cell carcinoma (STELLAR-305): A double-blind, randomized, placebo-controlled, phase 2/3 study. *Int J Radiat Oncol Biol Phys.* 2024;118(5):e40–e41. doi:10.1016/j.ijrobp.2024.01.092

95. Seiwert TY, Haddad RI, Johnson D, et al. A phase 2/3, randomized, open-label study of bempegaldesleukin plus pembrolizumab vs pembrolizumab alone in first-line treatment of patients with metastatic or recurrent head and neck squamous cell carcinoma with PD-L1-expressing tumors (PROPEL-36). *Int J Radiat Oncol Biol Phys.* 2022;112(5):e36–e37. doi:10.1016/j.ijrobp.2021.12.085

96. Topalian SL, Pardoll DM. Neoadjuvant anti-PD-1-based immunotherapy: Evolving a new standard of care. *J Immunother Cancer.* 2025;13(1):e010833. doi:10.1136/jitc-2024-010833

97. Zhang S, Zheng M, Nie D, et al. Efficacy of cetuximab plus PD-1 inhibitor differs by HPV status in head and neck squamous cell carcinoma: A systematic review and meta-analysis. *J Immunother Cancer.* 2022;10(10):e005158. doi:10.1136/jitc-2022-005158

98. Mitchell TC, Hamid O, Smith DC, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: Phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). *J Clin Oncol.* 2018;36(32):3223–3230. doi:10.1200/JCO.2018.78.9602

99. Cohen EE, Rischin D, Pfister DG, et al. A phase 3, randomized, open-label study of epacadostat plus pembrolizumab, pembrolizumab monotherapy, and the EXTREME regimen as first-line treatment for recurrent/metastatic head and neck squamous cell carcinoma (R/M SCCHN): ECHO-304/KEYNOTE-669. *J Clin Oncol.* 2018;36(15). doi:10.1200/JCO.2018.36.15_suppl.TPS6090

100. Jung KH, LoRusso P, Burris H, et al. Phase I study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors. *Clin Cancer Res.* 2019;25(10):3220–3228. doi:10.1158/1078-0432.CCR-18-2740

101. Nishina T, Fujita T, Yoshizuka N, Sugibayashi K, Murayama K, Kuboki Y. Safety, tolerability, pharmacokinetics and preliminary antitumour activity of an antisense oligonucleotide targeting STAT3 (danavatirsen) as monotherapy and in combination with durvalumab in Japanese patients with advanced solid malignancies: A phase 1 study. *BMJ Open.* 2022;12(10):e055718. doi:10.1136/bmjjopen-2021-055718

102. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. *Mol Cancer.* 2020;19(1):145. doi:10.1186/s12943-020-01258-7

103. Cristina V, Herrera-Gómez RG, Szturz P, Espeli V, Siano M. Immunotherapies and future combination strategies for head and neck squamous cell carcinoma. *Int J Mol Sci.* 2019;20(21):5399. doi:10.3390/ijms20215399
104. Nguyen JP, Woerner LC, Johnson DE, Grandis JR. Future investigative directions for novel therapeutic targets in head and neck cancer. *Expert Rev Anticancer Ther.* 2024;24(11):1067–1084. doi:10.1080/14737140.2024.2417038
105. Sim ES, Nguyen HCB, Hanna GJ, Uppaluri R. Current progress and future directions of immunotherapy in head and neck squamous cell carcinoma: A narrative review. *JAMA Otolaryngol Head Neck Surg.* 2025;151(5):521–528. doi:10.1001/jamaoto.2024.5254