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Abstract

Background. Periodontitis is an inflammatory disease of the oral cavity that affects the soft and hard
tissues of the periodontium due to dysbiosis by Porphyromonas gingivalis. The bacterium establishes its
pathogenicity through its virulence factors, such as fimbriae, and by the releasing proteases like gingipains.
The lysine-specific gingipain K (Kgp) is characterized by the presence of a hemagglutinin (HA)—adhesin
domain, which provides the micronutrients for the survival of the microbe. 4-Caffeoylquinic acid (4-CQA)
is classified as a phenylpropanoid. It exhibits a variety of bioactivities, including anti-inflammatory, anti-
microbial, antihistaminic, and antioxidant properties. Moringa oleifera has multiple therapeutic benefits and
is used in the treatment of cancer, infections, diabetes, and arthritis. 4-Caffeoylquinic acid was identified
among the phenolic phytocomponents present in M. oleifera.

Objectives. The aim of the present study was to use in silico docking and a dynamic model to evaluate the
potential inhibition of Lys-gingipain of £ gingivalis by 4-CQA of M. oleifera.

Material and methods. Molecular docking and dynamic simulations of the Lys-gingipain protein and
4-(QA ligands were performed using the Desmond software. The protein structure of Lys-gingipain was
downloaded from the Protein Data Bank (PDB) and preprocessed using the optimized potentials for liquid
simulations (OPLS 2005) force field.

Results. During the course of the dynamic simulation, the trajectories were saved for the analysis
every 100 ns. The stability of the complex was confirmed by a root mean square deviation (RMSD) plot.
In the context of molecular docking, the protein (Lys-gingipain) and the ligand (4-CQA) were found
to have a potential binding site with the use of hydrogen bonds. The compound had a docking score
of —6.6 keal/mol. According to the results of the dynamic study, as depicted in the RMSD plot, the
compound demonstrated stability within the range of 1.0-3.0 A.

Conclusions. The inhibition of Lys-gingipain by 4-CQA is a promising avenue for further investigation,
whether in vitro or in vivo.

Keywords: Moringa oleifera, chronic periodontitis, molecular docking, gingipains, Porphyromonas
gingivalis
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Highlights
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* Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, expresses Lys-gingipain protease, which

contributes to host tissue destruction and dysbiosis.

4-Caffeoylquinic acid (4-CQA), a phenolic compound derived from Moringa oleifera, demonstrated strong binding

affinity (-6.6 kcal/mol) to Lys-gingipain via multiple hydrogen and n—m interactions in molecular docking.

its inhibitory potential.

Molecular dynamics simulation confirmed the stability of the 4-CQA-Lys-gingipain complex up to 100 ns, supporting

* 4-CQA may function as a natural gingipain inhibitor, offering a promising adjunctive or preventive approach for

the management of periodontitis.

* Further in vitro and in vivo studies are needed to confirm the bioactivity and translational potential of M. oleifera-

derived phytocompounds in periodontal therapy.

Introduction

Periodontitis is a common oral condition prevalent
in individuals with poor oral hygiene and affecting both
the hard and soft supporting structures of the teeth.
Additional factors that could influence the course of the
disease include various systemic conditions, stress, mal-
occlusion, orthodontic therapy, ill-fitting dentures, and
genetics.! Population-based studies have concluded that
untreated periodontitis results in compromised qual-
ity of life due to functional, aesthetic and social disabili-
ties.2 Periodontitis is caused by dysbiosis of oral microbial
flora colonizing the supra- and subgingival regions of the
teeth.? Regarding the polymicrobial etiology, the complex
red organisms are commonly associated with periodonti-
tis, including Porphyromonas gingivalis, Treponema
denticola and Tannerella forsythia®* Of P gingivalis,
a Gram-negative anaerobic rod exhibits a more significant
effect on the oral microbiome and disrupts host—microbe
hemostasis.” As P, gingivalis initiates the dysbiosis of oral
flora, it is called the keystone pathogen. It establishes and
propagates periodontal disease through a virulence fac-
tor called gingipain. Gingipains are a group of cysteine
proteases that are found in the outer membrane or the
vesicles of the bacteria.® They play a crucial part in main-
taining the pathogenic functions of the bacterium in the
host. Gingipains aid in colonization and adherence of the
pathogen to epithelial cells, as well as cause the break-
down of erythrocytes, resulting in hemolysis. The gener-
ated heme provides an additional nutritional source for
further multiplication and colonization of the bacteria.
Subsequently, P. gingivalis modulates the host inflamma-
tory response, leading to further progression and tissue
destruction.”

Based on its amino acid composition, a gingipain can
be classified as:

« arginine-specific gingipain A (RgpA);
« arginine-specific gingipain B (RgpB);
« lysine-specific gingipain K (Kgp).

Lysine-specific gingipain K has a maximum of 3-5 hem-

agglutinin (HA)/adhesin domains in its genomic protein.

In contrast, there are only 4 HA/adhesin domains in RgpA
and no such domains in RgpB. As the number of domains
increases, there is a concomitant increase in the effec-
tiveness of host cell adhesion and heme acquisition.” The
distribution of domains in Kgp is a critical virulent factor
of P, gingivalis.® The analysis of the pathogens involved in
the development of this pathology is a recurrent theme in
the literature, which underscores its importance as a pub-
lic health problem. Precisely for this purpose, the ability
to identify targeted treatments against selected bacterial
species is of current and future interest.!°

Scientific evidence has suggested that since P. gingivalis
is the keystone pathogen of periodontitis, treatment strat-
egies directed towards it may prevent disharmony of the
oral microbiome and inhibit disease progression. There
are several treatment modalities for periodontitis, includ-
ing non-surgical therapy involving scaling and root plan-
ning with or without antimicrobial therapy to decrease
the microbial load, host modulation therapy, and surgical
therapy for repairing or regenerating the lost periodon-
tium.!! Advanced treatment strategies that could inhibit
gingipain functions may have an indirect biological effect
on P gingivalis. They could suppress the availability of
micronutrients for the growth of the bacterium and make it
vulnerable to the defensive actions of immune cells. Apart
from chemotherapeutic agents, natural remedies such as
tulsi, aloe vera, neem, propolis, tea tree oil,'> and tropical
fruits like mangosteen!® have been studied for their anti-
microbial effect in the non-surgical treatment of peri-
odontitis. The extensive research on herbal remedies is
attributable to their anti-inflammatory, antioxidant and
antimicrobial properties, along with a reduced incidence
of side effects.!*

Moringa oleifera, also known as the miracle tree, is one
of the most commonly cultivated trees in tropical and sub-
tropical regions. It is a rich source of phytonutrients, vita-
mins, minerals, and essential amino acids. Moringa oleifera
also provides a rare combination of zeatin, quercetin,
sitosterol, caffeoylquinic acid, and kaempferol.!> Various in
vitro studies have concluded that many parts of M. oleifera,
like leaves, pods, barks, nuts, flowers, and tubers, possess
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significant health benefits.!® 4-Caffeoylquinic acid
(4-CQA) is a phenylpropanoid of M. oleifera, the bioactivities
of which include antioxidant, antibacterial, antidiabetic,
anticancer, and antihistaminic effects.l” The antibacterial
activity of phenolic compounds has been attributed to the
loss of cellular integrity, leading to increased membrane
permeability, subsequent disturbance of the cellular mem-
brane, and ultimately, cell death.!®

Molecular docking is a computer-assisted tool that is
used to identify the complete binding site between the
target protein and the drug in a three-dimensional
assembly.!? This identification is a preliminary step in drug
design that is performed before conducting in vitro and
in vivo research. Hence, the present study aimed to assess
the potential inhibition of P gingivalis Lys-gingipain by
4-CQA of M. oleifera by means of in silico docking and
dynamic simulations.

Material and methods

Molecular docking and dynamic simulations of the Lys-
gingipain protein and 4-CQA ligands® were performed
using the Desmond software (Schrodinger, New York,
USA).

The 3D protein structure of Lys-gingipain was down-
loaded from the Protein Data Bank (PDB) database
(https://www.rcsb.org/structure/3M1H). The protein
structure was processed using the Maestro platform
(https://www.schrodinger.com/platform/products/maestro;
Schrodinger). The Protein Preparation Wizard (Maestro;
Schrodinger) was used to preprocess the receptor—
ligand complex. In general, water molecules present in
the protein can be easily displaced by the ligand or be
a hindrance to the binding pocket. Therefore, the pre-
processing steps in the protein preparation removed all
heteroatoms and loosely bound water molecules by the
addition of hydrogen ions. The selected protein structure
was then examined for gaps and built further to fill the
loops. After optimization, it was minimized using the
optimized potentials for liquid simulations (OPLS 2005)
force field. Conformers for each compound were obtained
using force field estimates by the OPLS 2005 between
atoms within and between the molecules.

The ligand was prepared after downloading the chemi-
cal structure of 4-CQA from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/#query=9798666).
Then, the ligand was subjected to energy minimization
using the OPLS 2005 force field to achieve correct bond
length, order and angle with minimal energy. This grid-
based ligand docking method was used to evaluate the
interaction between the protein and the ligand. A grid
box was utilized to describe the protein’s binding site
with the following dimensions: center X — 9.599; center
Y — 3.6929; center Z — 29.3808; size of X — 50.2525510788;
size of Y — 33.8531600094; and size of Z — 34.8833085537.
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Molecular dynamic simulations

The System Builder tool was used in the preparation
of each system. The tool is designed to simulate the pro-
tein and the ligand. The default solvent water model
TIP3P (3 points of transferable intermolecular interac-
tion potential) with an orthorhombic box was selected to
perform the dynamic simulation. Since there is a water-
mediated interaction between the protein and the ligand
in this TIP3 model, water must be included during the
docking calculation. The OPLS 2005 force field was uti-
lized in the simulation to generate the essential topology
records.

The addition of counterions served to neutralize the
models. To simulate the physiological condition, 0.15 M
of sodium chloride (NaCl) was added. The isothermal—
isobaric (NPT) ensemble was used, maintaining a tem-
perature of 300 K and 1-Atm pressure throughout the
simulation. The models were loosened before the simu-
lation. Every 100 ns, the trajectories were saved for the
analysis. The stability of the simulation was confirmed
by contrasting the root mean square deviation (RMSD)
of the protein and ligand over time.

Results

The three-dimensional docking model of the ligand—
protein complex and the protein-ligand complex of Lys-
gingipain and 4-CQA are depicted in Fig. 1 and Fig. 2,
respectively.

The interaction between the binding site residues of Lys-
gingipain protein and the 4-CQA ligand are depicted two-
dimensionally in Fig. 3 and three-dimensionally in Fig. 4.

The docking scores or binding affinities provide
an estimation of the strength of the interaction between
the ligand and the receptor. Lower scores or more negative
binding energies generally indicate stronger binding.

Fig. 1. Three-dimensional docking model of the protein-ligand interaction
of Lys-gingipain and 4-caffeoylquinic acid (4-CQA)
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Fig. 2. Three-dimensional docking model of the ligand-protein interaction
of Lys-gingipain and 4-CQA
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Fig. 3. Two-dimensional model of interactions between the binding site
residues of the protein and the ligand

The dotted green and purple lines represent hydrogen bonding and n-m
interactions, respectively. SER - serine; ALA — alanine; ILE - isoleucine;
PRO - proline; THR - threonine; ASN - asparagine; GLY - glysine;

TRP - tryptophan; LYS - lysine.

Fig. 4. Three-dimensional model of interactions between the binding site
residues of the protein and the ligand

The grey lines represent unknown interactions between the protein and
the ligand, which may also play a major role in their binding.

However, it is essential to validate these outcomes with
experimental data or alternative methods to assess their
reliability. Docking studies are a method of predicting
the binding mode of a ligand within a receptor’s active
site. An examination of the specific interactions, such as

L.A. Devarajan et al. Inhibition of Lys-gingipain by 4-CQA

hydrogen bonding, hydrophobic contacts and electrostatic
interactions, can help understand the key molecular
interactions responsible for ligand binding. In the pres-
ent study, the compound demonstrated a docking score
of —6.6 kcal/mol, therefore substantiating strong binding
between the ligand and the protein.

These results indicate that the 4-CQA ligand demon-
strates the most favorable affinity for binding with the
Lys-gingipain protein by forming strong hydrogen bond
interactions with amino acids such as ALA 1440, PRO
1439, TRP 1442, and GLY 1451. The compound also
forms a m—m interaction with ILE 1438.

Figure 5 presents the RMSD of the ligand molecule
docked on the protein. According to the complex protein—
ligand RMSD plot, the complex reached stability at 60 ns.
Following this, the RMSD values for the protein remained
within the 1.0-2.0 A range throughout the simulation,
while the ligand RMSD fluctuated within the 1.0-3.0 A
range. The RMSD figure demonstrated that the proteins
within the complex reached stability at 60 ns. Following
that, fluctuations in the RMSD values for the protein
remained within the 1.0-2.0 A range throughout the
simulation. In contrast, the ligand RMSD values varied
more widely, within the 8.0-36.0 A range up to 100 ns,
indicating higher conformational flexibility of the ligand
within the binding pocket.

Table 1 presents the hydrophobic interactions between
the amino acid residues of the protein and the ligand.
Table 2 shows the hydrogen bonds formed between the
amino acid residues of the protein and the ligand. These
parameters include the interaction distances and the
donor angles that characterize the bonding between the
protein and the ligand.
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Fig. 5. Root mean square deviation (RMSD) plot of the protein and the ligand

Ca - calcium ion; (Lig) fit on prot - ligand fitted onto the protein. The Ca
serves as a cofactor in the protein’s active site.

Table 1. Hydrophobic interactions between the amino acid residues of the
protein and the ligand

: Amino | Distance | Ligand Protein
Index Residue .
acid [pm] atom atom
K 1438A ILE 377 1608 08|
‘ 2 1438A ILE 3.58 1607 1M1 ‘

ILE - isoleucine.
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Table 2. Hydrogen bonding between the amino acid residues of the protein and the ligand

1439A 2.88 3.62 134.07 1618 1167 (
2 1444A THR 2.10 292 137.58 yes no 163 1617 (O,)
3 1453A ASN 2.31 3.16 142.28 yes yes 241 1620 (03)
4 1453A ASN 2.89 3.80 151.84 yes no 235 1622 (Os)
5 1455A THR 3.05 375 127.62 yes yes 268 1619 (03)
6 1456A THR 3.18 4.09 152.24 yes no 271 1616 (Os)

PRO - proline; THR — threonine; ASN — asparagine; H-A distance - distance between the hydrogen bond and the acceptor atom; D-A distance - distance

between the donor and the acceptor atom.

Discussion

Periodontitis is caused by microbial pathogens present
in biofilm complexes.?! These pathogens have a strong
affinity to enter the bloodstream and rupture atherosclerotic
plaque, causing fatality like stroke.?? Among the patho-
gens, P gingivalis in the red complex group significantly
contributes to chronic periodontitis.?® Though there are
many periopathogens, P. gingivalis is the one that is com-
monly isolated from subgingival plaque samples.?* It has
various virulence factors like fimbriae, capsules, vesicles,
and proteases in the outer membrane.?>~” The virulence
factors help colonize and multiply the bacteria by evading
the host defense mechanism. Notably, heme is required for
the growth of P. gingivalis, which, in turn, is acquired by
the bacteria itself through the process of hemolysis of the
host erythrocytes. The process of hemolysis is facilitated
by the gingipain protease of P. gingivalis.?® Gingipains are
a group of cysteine proteinases that are commonly found
in the outer membrane of bacteria. Apart from degrading
the proteins for their nutrition, they also compromise the
host immune response and cause destruction of the peri-
odontal soft and hard tissues.?® A periodontal treatment
that targets the HA domain of gingipain has the potential
to inhibit the colonization of P. gingivalis on the root sur-
face.?” Cysteine peptidases, such as Kgp, RgpA and RgpB,
which account for 85% of the pathogen’s extracellular
proteolytic activity, are good candidates for inactivation.
FA-70C1 is a strong P, gingivalis gingipain inhibitor derived
from Streptomyces FA-70 culture supernatant.® Previous
research has reported the high-resolution (1.20) complex
structure of Kgp with KYT-36, a peptide-derived, effec-
tive, bioavailable, and highly selective inhibitor.3!

Phytocomponents are a rich source of protease inhibi-
tors. In this regard, the extract of rice grain of Oryza
sativa exhibited a significant gingipain inhibitory effect
on Kgp and Rgps.®® These rice proteins were denoted as
16 unassigned peptidase inhibitor homologues in the
database.®* Canavanine present in sword bean (Canavalia
gladiata), when administered orally, decreased the alveolar
bone loss in P gingivalis-induced periodontitis in rats.3?
Polyphenols present in cranberry significantly reduced

biofilm formation by P gingivalis and Fusobacterium
nucleatum. Catechin, a polyphenol present in green tea,
reduced the inflammatory reaction through its inhibitory
effect on Rgp gingipain.3® Moringa oleifera contains phyto-
compounds, including flavonoids and phenolic acids.
Phenolic acids are secondary plant metabolites that contain
one or more hydroxyl groups connected to aromatic rings
and act as scavengers.>* Among the phenolic compounds
present in M. oleifera, CQA is also isolated from extracts
of M. oleifera.?® Caffeoylquinic acid has shown antioxidant,
antibacterial and anti-inflammatory properties.

Caffeoylquinic acid is otherwise called chlorogenic
acid (CA).*” A study was conducted to assess the effect
of coffee on periodontitis, given the presence of caffeine
and CA in the beverage.®® The study concluded that CA
demonstrated significant anti-inflammatory activity
because it inhibited nuclear factor kappa B (NF-kB) and
resulted in substantial radical oxygen scavenging. The anti-
inflammatory effect of CQA is enhanced in the presence
of other phytocomponents, such as flavonoids.

In another study, the antibacterial effect of CA was
tested against P. gingivalis. The results demonstrated that
CQA exhibited substantial anti-proteinase activity and
had a prolonged inhibitory effect on P. gingivalis.>

The effect of 4-CQA of M. oleifera on Lys-gingipain has
not been elucidated. The current study focused on the
impact of CQA in M. oleifera on proteinase Lys-gingipain
of P, gingivalis by in silico docking and dynamic simulation
study. Based on the present findings, 4-CQA, a phenolic
extract of M. oleifera, has been demonstrated to be a potent
inhibitor of Lys-gingipain from P gingivalis. The protein
and the ligand exhibited a strong binding affinity for each
other, as well as for amino acid residues like ALA 1440,
PRO 1439, TRP 1442, and GLY 1451 by forming a hydro-
gen bond with the hydroxyl groups of the aromatic rings.
The compound exhibited a docking score of -6.6 kcal/mol.
According to the results of the RMSD plot, the compound
demonstrated stability at 60 ns within the 1.0-3.0 A range.

In subsequent in vivo studies, M. oleifera extracts can
be applied topically to the periodontal pockets in the form
of fibers, thermo-reversible gels, chips, or nanoparticle
mouthwashes? to test their efficacy against periodontal
pathogens.
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Limitations

The present study was able to assess the interaction
between the protein and the ligand in an in silico molecular
docking model. However, further research is necessary to
confirm the bioactivity between P. gingivalis and 4-CQA
in an in vitro design. Additionally, given that the blind
docking technique was employed in this stage, future
studies may utilize active site docking to evaluate the spe-
cific protein binding efficiency.

Conclusions

In recent years, ethnomedicine has emerged as a novel
approach to prevent multi-drug resistance while treating
various diseases, including periodontitis. This study con-
cludes that 4-CQA, a phenolic extract acquired from the
leaves of M. oleifera, could be used as a potent, novel and
natural inhibitor of Lys-gingipain to prevent the progres-
sion of periodontitis.
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