# Challenges in defining an efficient cleansing protocol against mono- and multi-species biofilms on a cobalt-chromium alloy surface

Priscilla Neves Raile<sup>1,A,B,E,F</sup>, Patricia Almeida Curylofo<sup>1,B,F</sup>, Viviane de Cássia Oliveira<sup>1,2,B,D,F</sup>, Ana Paula Macedo<sup>1,B,C,E,F</sup>, Glenda Lara Lopes Vasconcelos<sup>1,B,F</sup>, Helena Freitas Oliveira Paranhos<sup>1,A,E,F</sup>, Valéria Oliveira Pagnano<sup>1,A,E,F</sup>

- <sup>1</sup> Department of Dental Materials and Prosthodontics, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- <sup>2</sup> Human Exposome and Infectious Diseases Network (HEID), School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- A research concept and design; B collection and/or assembly of data; C data analysis and interpretation;
- D writing the article; E critical revision of the article; F final approval of the article

Dental and Medical Problems, ISSN 1644-387X (print), ISSN 2300-9020 (online)

Dent Med Probl. 2025;62(4):711-719

#### Address for correspondence

Viviane de Cássia Oliveira E-mail: vivianecassia@usp.br

#### **Funding sources**

This work received financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES) scholarship (finance code 001).

#### **Conflict of interest**

None declared

#### Acknowledgements

The authors wish to thank Professor Gilberto Orivaldo Chierice (in memoriam), for providing the *Ricinus communis* solution, and Maria José Alves da Rocha and João Paulo Mardegan Issa for facilitating the epifluorescence microscope and the quantification software.

Received on July 3, 2023 Reviewed on August 3, 2023 Accepted on August 10, 2023

Published online on August 29, 2025

## Cite as

Raile PN, Curylofo PA, Oliveira VdC, et al. Challenges in defining an efficient cleansing protocol against mono- and multi-species biofilms on a cobalt-chromium alloy surface. *Dent Med Probl.* 2025;62(4):711–719. doi:10.17219/dmp/170920

#### DOI

10.17219/dmp/170920

### Copyright

Copyright by Author(s)
This is an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported License (CC BY 3.0)
(https://creativecommons.org/licenses/by/3.0/).

## **Abstract**

**Background.** Effective cleaning protocols are crucial for controlling biofilm formation on oral prostheses and preserving the oral health of patients relying on removable partial dentures (RPDs).

**Objectives.** The present study aimed to investigate the antibiofilm efficacy of 4 cleansing protocols on a cobalt-chromium (Co-Cr) alloy surface, which is commonly used as the base-metal framework material in dental prosthodontics.

Material and methods. Cobalt-chromium specimens were contaminated with isolated strains of *Candida albicans*, *Candida glabrata*, *Staphylococcus aureus*, and *Streptococcus mutans* to form monospecies biofilms. For a multi-species biofilm, all strains were grown simultaneously on the surfaces of the specimens. After biofilm maturation, the specimens were immersed in different solutions: *Ricinus communis* 2%; *R. communis* 10%; Cepacol ™; NitrAdine ™; and distilled water (control). After applying the hygiene protocols, the viability of the microorganisms and the amount of residual biofilm were assessed.

**Results.** Immersion in *R. communis*-based solutions did not significantly alter the viability of the microorganisms. Cepacol reduced the viability of *C. albicans*, *C. glabrata* and *S. aureus* in the mono-species biofilms, as well as *C. glabrata* in the multi-species biofilm. NitrAdine demonstrated effectiveness in reducing the viability of *C. glabrata* and *S. mutans* in both the mono- and multi-species biofilms. However, its efficacy against *S. aureus* was only observed in the mono-species pattern. NitrAdine also reduced the area covered by the living biofilm.

**Conclusions.** The studied cleansing protocols exhibited reduced antimicrobial efficacy on the multi-species biofilm as compared to the mono-species model. NitrAdine showed potential as a complementary agent for controlling biofilm formation on removable partial dentures.

**Keywords:** removable partial denture, cleansers, antimicrobial action, cobalt-chromium alloy

# **Highlights**

- The cleansing protocols were less effective against the multi-species biofilm as compared to the mono-species biofilms.
- NitrAdine™ showed potential as a complementary agent for controlling biofilm on removable partial dentures.
- · None of the tested solutions could significantly reduce both microbial viability and the biofilm-covered areas.
- NitrAdine<sup>TM</sup> reduced the viability of the most species, but had no effect on the *Candida albicans* microbial load.
- Cepacol<sup>™</sup> was effective in the mono-species biofilms, but performed poorly in the multi-species biofilm.

# Introduction

Oral biofilms are composed of bacteria and yeast-like fungi, which adhere and grow on biotic and abiotic surfaces.<sup>1</sup> Biofilms, with an inadequate hygiene of prostheses, constitute a source of microorganisms and act as a gate to systemic diseases.<sup>2</sup> Although it is known that the control of biofilm formation on oral prostheses is crucial for maintaining general health, there is no consensus regarding a suitable solution for removable partial dentures (RPDs).<sup>3–5</sup>

Compatibility with constituent materials is a requisite for an ideal RPD cleanser.<sup>4,5</sup> Additionally, other aspects, such as a low cost, easy manipulation and antibiofilm activity, are desirable.<sup>6,7</sup> There is evidence that diluted sodium hypochlorite is efficient in controlling biofilm formation; however, it is not recommended for to cleaning RPDs, taking into consideration their metal components.<sup>3,8</sup> Mouthwashes are popular in oral care and are frequently used as prosthesis cleansing solutions,9 even though there are no specific guidelines regarding their use. Generally, these formulations include chlorhexidine, chlorine dioxide, cetylpyridinium chloride, and essential oils (e.g., eucalyptol, menthol, thymol, and methyl salicylate). 10 Besides mouthwashes, effervescent tablets are also largely used, partly due to their pleasant taste and odor characteristics. They are composed of different active ingredients, such as titanium dioxide, sodium lauryl sulfate and ethylenediaminetetraacetic acid (EDTA).<sup>11</sup> Both mouthwashes and effervescent tablets are complex chemical combinations that can damage the dental alloy as a result of ion release in the presence of oxidizing compounds. 12 According to previous studies, the NitrAdine<sup>TM</sup> effervescent tablet acts against oral biofilms<sup>13,14</sup> and may be indicated as an RPD cleanser, as its 5-year use did not induce deleterious effects to the dental alloy.<sup>4,5</sup> Nonetheless, given different characteristics of dental materials, it is fundamental to verify the antibiofilm activity of the cleanser on a metallic surface.

Broadening the knowledge about the antimicrobial properties of natural substances can have an impact on the selection of appropriate products to deal with the resistance of microorganisms. <sup>15</sup> Furthermore, it has been suggested that natural products do not have adverse effects inherent

to synthetic compounds, and contribute to environmental and economic sustainability. The *Ricinus communis* or castor oil plant belongs to the *Euphorbiaceae* family and is easily found in tropical zones. The *R. communis* oil has been used since antiquity, and has been demonstrated in medical and dental research to bring significant benefits. Regarding its biological effects, the literature reports its healing, antioxidant, anti-inflammatory, and antimicrobial properties. Healing, antioxidant, anti-inflammatory, and antimicrobial properties. Such a dentistry, previous studies indicated its potential use for prothesis hygiene 22,23 and the improvement of clinical conditions of denture-related stomatitis. Even though the scientific literature has pointed out the compatibility of *R. communis* with the cobalt-chromium (Co-Cr) alloy, its antibiofilm effect on a metallic surface has not been investigated.

Considering that inconsistent RPD hygiene can favor the manifestation of opportunistic pathologies, 25 new hygiene solutions should be investigated. Given this point, it is important to advertise that the presence of Candida spp. on a denture surface is an etiological factor for denture-related stomatitis. <sup>26</sup> In addition, the presence of other species, such as Staphylococcus aureus and Streptococcus mutans, may contribute to the pathogenicity of the biofilm.<sup>2,27</sup> The physical interactions of Candida albicans with various species go beyond simple synergistic and antagonistic associations. These interactions significantly influence the expression of virulence factors, directly impacting colonization and tissue invasion. 26 Staphylococcus aureus, S. mutans, C. albicans, and Candida glabrata are common species colonizing the abutment and non-abutment teeth in RPD wearers.<sup>28</sup> The presence of respiratory pathogens in the denture biofilm has already been investigated, and prostheses seem to act as a reservoir for S. aureus.<sup>29</sup> It is evident that the oral environment in RDP wearers is the habitat a polymicrobial community that interacts and forms a structured biofilm within a short period after clinical rehabilitation. However, the majority of studies refer to hygiene protocols only with regard to mono-species biofilms. Therefore, it is crucial that the antimicrobial analysis of RPD cleansers should explore different biofilm models.

For the aforementioned reasons, the present study analyzed the antimicrobial activity of cleansing solutions (mouthwash Cepacol<sup>TM</sup>, effervescent tablet NitrAdine, and experimental solutions of *R. communis* (2% and 10%))

Dent Med Probl. 2025;62(4):711–719 713

against mono- and multi-species biofilms (*C. albicans*, *C. glabrata*, *S. aureus*, and *S. mutans*) grown on a Co-Cr surface. The null hypothesis of this study was that the viability of the microorganisms and the biofilm-covered areas would be influenced by the cleansing protocols.

# Material and methods

## **Experimental solutions**

Castor oil was extracted from seeds, using the cold pressing method (Chemical Institute of São Carlos, University of São Paulo, São Carlos, Brazil). Initially, to formulate the *R. communis* solution, an esterification reaction with alcohols was performed. Afterward, the ester-containing solution was diluted in distilled water at final concentrations of 2% (RC02) and 10% (RC10) (v/v). The commercial mouthwash Cepacol (Reckitt Benckiser, São Paulo, Brazil) (CPC) was directly applied without dilution. The peroxide-based solution (Ni) was prepared by diluting one NitrAdine effervescent tablet (Bonyf, Vaduz, Liechtenstein) in 150 mL of water at 37°C, as directed by the manufacturer (Table 1).

# Specimen manufacturing

A total of 244 Co-Cr disks were manufactured using the lost-wax casting method. Circular wax patterns (Ø 12 × 3 mm) were made using a metal matrix. The wax patterns were covered with the Micro-fine 1700 phosphate coating (Talladium Brazil, Curitiba, Brazil) and casting was performed using the Neutrodyn Easyti electronic machine (F.Lli Manfredi, Turin, Italy) by vacuum electroinduction. The disks were deflated and blasted with 100-micrometer aluminum oxide particles (Aluminum Oxide 100; Asfer Indústria Química, Sao Caetano do Sul, Brazil) at a pressure of 3 bar, using the Microjet III device (EDG, São Carlos, Brazil) for cleaning. After being separated from the feed channel, the opposing surfaces were progressively polished with 220-, 400-, 600-, and 1,200-grit sandpaper (Norton Abrasivos Brasil, Guarulhos, Brazil). The surface roughness of the specimens was standardized

in the range of  $0.04-0.10 \,\mu\text{m}$ . The specimens were packaged in envelopes and sterilized with ethylene oxide.

#### **Culture conditions**

Four strains from the American Type Culture Collection (ATCC) were used for biofilm development: *C. albicans* (ATCC 10231); *C. glabrata* (ATCC 2001); *S. aureus* (ATCC 25923); and *S. mutans* (ATCC 25175). The experiment was carried out in 3 biological replications with 3 technical repetitions each, totaling in 9 specimens per group.

Biofilm growth was conducted under aseptic conditions, following the protocol described previously.<sup>11</sup> Briefly, the strains kept at -80°C in a glycerol stock were thawed and streaked out on a selected agar culture medium: for *C. albicans* and *C. glabrata* – Sabouraud Dextrose Agar (SDA) (HiMedia Laboratories, Mumbai, India); and for S. aureus and S. mutans - Brain Heart Infusion (BHI) broth (HiMedia). The plates were incubated at 37°C for 24 h. Subsequently, a microbial colony was transferred to its respective broth medium and re-incubated at 37°C for 24 h to obtain cells in the exponential growth phase. The cultures were then centrifuged at 4,200 g for 5 min. The resulting pellet was washed twice with phosphatebuffered saline (PBS). Candida spp. counting was performed in the Neubauer chamber (Kasvi, Curitiba, Brazil) due to the variable morphology of the genus. To adjust the cell concentration (108 colony-forming units per milliliter (CFU/mL)), the bacterial suspension was read on a spectrophotometer (Multiskan GO; Thermo Scientific, Waltham, USA) at 625 nm.

For mono-species biofilms, the inoculum was separately prepared in Sabouraud Dextrose Broth (SDB) (HiMedia) (*C. albicans* and *C. glabrata*) and BHI Broth (HiMedia) (*S. aureus* and *S. mutans*) at a cell concentration of 10<sup>6</sup> CFU/mL. The specimens were randomly assigned into 12-well cell culture plates (TPP Techno Plastic Products, Trasadingen, Switzerland) and filled with 2 mL of the inoculated culture media. In this model, each specimen was contaminated with only one species.

For a multi-species biofilm, the inoculum was prepared with the mixture of the 4 evaluated microorganisms for the specimens to be simultaneously contaminated with

**Table 1.** Characteristics of the hygiene solutions

| Hygiene solution        | Active ingredients*                                                                                                                                                                                    | Directions for use |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| Ricinus. communis 2%    | contact of high in fath, and do of which C10.10 Unicipalain is available (0.000)                                                                                                                       |                    |  |  |
| Ricinus communis<br>10% | castor oil rich in fatty acids, of which C18:10H-ricinoleic is predominant (~85.0%)                                                                                                                    |                    |  |  |
| Cepacol™                | water, alcohol denat. 14%, glycerin, cetylpyridinium chloride (Ceepryn) 0.05%, flavors, sodium phosphate, disodium phosphate, Polysorbate 80, saccharin, disodium EDTA, FD&C Yellow No. 5 (tartrazine) |                    |  |  |
| NitrAdine™              | citric acid, sodium lauryl sulfate, lactose monohydrate, sodium bicarbonate, sodium chloride, potassium hydrogen monopersulfate                                                                        | 15 min**           |  |  |

the *Candida* spp. and bacteria. The inoculum was prepared in BHI Broth at a cell concentration of  $10^7$  CFU/mL for bacteria and  $10^6$  CFU/mL for *Candida* spp. As in the case of the mono-species biofilms, the specimens were randomly assigned into 12-well cell culture plates and filled with 2 mL of the inoculated culture medium.

To attest the sterility of the experiment, one additional specimen received a sterile culture medium. The specimens were kept in an incubator (Shaker Incubator CE-320; Cienlab, Campinas, Brazil) at 37°C for 90 min under agitation (75 rpm) for the adhesion period. After this period, the specimens were washed twice with PBS and the same volume of a sterile culture medium was added to the wells. The plates were re-incubated for 48 h. After 24 h, 1 mL of the culture medium was removed, and the same volume of a fresh culture medium was added to the wells. All cultivation steps were performed in a microaerophilic environment.

# Hygiene protocols

The specimens were transferred to sterile perforated stainless-steel baskets<sup>30</sup> and placed inside containers with 150 mL of a cleanser solution, remaining fully immersed. An adapted stainless-steel wire allowed the baskets to remain suspended and not touch the bottom of the container. Immersion in the R. communis-based solutions and CPC was performed for 20 min and 10 min, respectively. The immersion times were chosen based on the results of previous studies, which demonstrated both antibiofilm effects and the absence of adverse effects for the hygiene solutions.<sup>3,12,19,20,22</sup> Immersion in Ni was performed for 15 min, according to the manufacturer's instructions. Immersion in distilled water for 20 min was used as a control, and the rationale for the immersion time was based on the longest evaluated period. The specimens of negative control (without contamination) were also immersed in distilled water for 20 min. At the end of the immersion periods, the specimens were rinsed 3 times with sterile PBS to eliminate cleanser residues.

## Viability assay

After immersion, the specimens were transferred to a tube containing 10 mL of the Letheen Broth medium (BD Difco™, Sparks, USA). The tubes were sonicated (200W, 40 KHz) (Clean 9CA; Altsonic, Ribeirão Preto, Brazil) for 20 min to detach the remaining microorganisms. The resulting suspension was vortexed for 30 s, and serial dilutions (10⁻¹ to 10⁻⁴) were seeded in a selected culture medium: for *C. albicans* and *C. glabrata* − CHROMagar Candida Medium (CAC) (BD Difco); for *S. aureus* − Mannitol Salt Agar (MSA) (HiMedia), supplemented with nystatin (200 U/mL); and for *S. mutans* − Mitis Salivarius Agar (HiMedia), supplemented with nystatin (200 U/mL). The plates were incubated at

 $37^{\circ}$ C for 48 h. The incubation of *S. mutans* was performed in microaerophilic conditions. The number of colonies was registered and expressed in  $\log_{10}$ CFU/mL.

# **Biofilm removal capacity**

Since elevated resistance to the hygiene protocols was observed in the multi-species biofilm, an evaluation of the biofilm removal capacity was performed in this case. Thus, the specimens with the multi-species biofilm were analyzed by visualizing the amount of live and dead cells on the surfaces of the specimens. After conducting the hygiene protocols, 2 specimens from each group were transferred to a new 12-well plate and stained with 1.5 mL of LIVE/DEAD BacLight<sup>TM</sup> Kit (Invitrogen Molecular Probes, Eugene, USA), prepared according to the manufacturer's instructions. Briefly, the working solution was prepared by adding 3  $\mu L$  of the SYTO® 9 stain and 3  $\mu L$  of the propidium iodide stain to 1 mL of distilled-sterilized water.

The plates were incubated for 15 min at room temperature, protected from light. The surfaces of the specimens were subsequently washed with PBS and analyzed under an inverted fluorescence microscope (Carl Zeiss, Oberkochen, Germany) with the appropriate filters. Twenty random fields were captured at  $\times 630$  magnification to quantify the total area occupied by green and red cells. Images were captured with the ZEN Lite software, v. 2.3 (Carl Zeiss), and the biofilm-covered areas  $[\mu m^2]$  were quantified with the AxioVision software, v. 4.8.2 (Carl Zeiss). Since all cells are dyed green, the area was considered as the total biofilm (live and dead cells). Red staining indicated dead cells. The area of the living biofilm was calculated as the difference between the green-stained cell area and the red-stained cell area.  $^{14}$ 

## Statistical analysis

At first, the data was tested to check for normal and homogeneous distribution by the Shapiro–Wilk and Levene tests, respectively. According to distribution, the Kruskal–Wallis test, followed by Dunn's post-test, or the analysis of variance (ANOVA), followed by Tukey's post-test were used to compare the results. Statistical analysis was performed using the IBM SPSS for Windows software, v. 21.0 (IBM Corp., Armonk, USA), at a significance level of 0.05.

# **Results**

# Viability of microorganisms

Based on the analysis of the biofilm viability, Ni showed the strongest antimicrobial action. In comparison with the control group, immersion in Ni reduced the microbial load of C. glabrata (2.18 log; p < 0.001), S. aureus

Dent Med Probl. 2025;62(4):711–719

(1.37 log; p = 0.012) and S. mutans (4.38 log; p = 0.002) when grown singly. The solution was also effective against C. glabrata (1.20 log; p = 0.006) and S. mutans (4.67 log; p = 0.010) when grown in association with other species. Cepacol promoted reduction in the viability of C. albicans (1.08 log; p = 0.018), C. glabrata (1.82 log; p = 0.001) and S. aureus (4.14 log; p < 0.001) grown in the mono-species biofilms. Regarding the multi-species biofilm, antimicrobial action was observed only against C. glabrata (1.34 log; p = 0.035). The experimental hygiene solutions RC02 and RC10 were not effective in reducing the

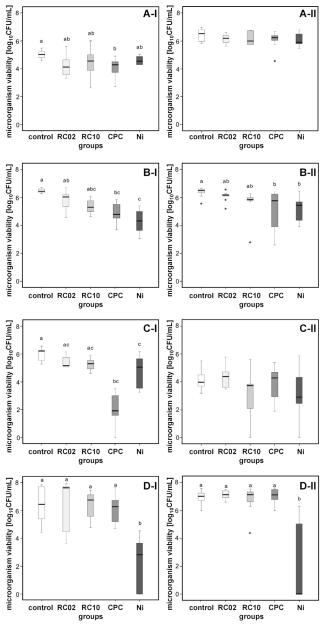



Fig. 1. Comparative analysis of microorganism viability [ $log_{10}$ CFU/mL] in the mono-species (I) and multi-species biofilms (II) after immersion in different hygiene solutions

A – Candida albicans; B – Candida glabrata; C – Staphylococcus aureus; D – Streptococcus mutans.

Groups: RC02 – *Ricinus communis* 2%; RC10 – *Ricinus communis* 10%; CPC – Cepacol $^{\text{IM}}$ ; Ni – NitrAdine $^{\text{IM}}$ . Different lowercase letters indicate a statistically significant difference.

viability of microorganisms grown in different biofilm patterns (Fig. 1 and Table 2).

Growth in association with different species seems to have increased the resistance of *C. albicans* and *S. aureus*, since CPC and Ni did not reduce the viability of the microorganisms in the multi-species biofilm, as happened for single biofilms. In contrast, this behavior was not observed for *C. glabrata* and *S. mutans* (Table 2).

## **Biofilm removal capacity**

With regard to the biofilm removal capacity, lower rates of live biofilm (green-stained cells) could be observed in comparison with the rates of total biofilm (green- and redstained cells) (p < 0.001). In agreement with the viability results, Ni promoted a considerable reduction of the living biofilm (p < 0.001). Cepacol, RC2 and RC10 presented moderate efficacy in reducing the amount of the living biofilm. When the total biofilm areas were compared, it was found that Ni resulted in a greater removal of the biofilm than other solutions (Table 3). After immersion in all different hygiene solutions, a large amount of the aggregated dead biofilm (red-stained cells) remained, covering an extensive portion of the surfaces of the specimens (Fig. 2). This finding indicates that, although Ni and CPC reduced cell viability (green-stained cells), they could not widely eliminate the biofilm from the surfaces of the specimens.

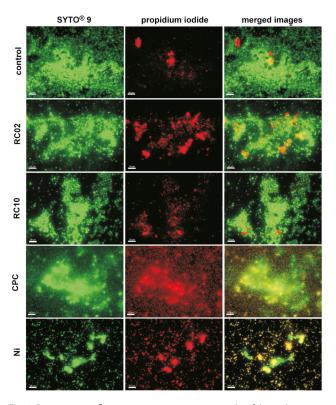



Fig. 2. Representative fluorescent microscopy micrographs of the multi-species biofilm grown on the cobalt-chromium (Co-Cr) surfaces immersed in different hygiene solutions (the cells were stained with the LIVE/DEAD BacLight Kit)  $\times 630$  magnification.

 $\textbf{Table 2.} \ \text{Biofilm viability [log}_{10} \text{CFU/mL] after immersion in different hygiene solutions}$ 

| Biofilm model | Microorganisms | Hygiene solutions  | M ±SD (Me)        | 95% <i>Cl</i> (range)    | <i>p</i> -value | Pairwise comparisons                                                                           |
|---------------|----------------|--------------------|-------------------|--------------------------|-----------------|------------------------------------------------------------------------------------------------|
|               |                | control            | 5.15 ±0.51 (5.03) | 4.82; 5.49 (4.56–6.30)   |                 |                                                                                                |
|               | C. albicans    | R. communis<br>2%  | 4.23 ±0.83 (4.12) | 3.59; 4.87 (3.32–5.59)   |                 |                                                                                                |
|               |                | R. communis<br>10% | 4.49 ±1.06 (4.55) | 3.67; 5.30 (2.64–6.00)   | 0.007**         | control vs. CPC: 0.018                                                                         |
|               |                | Cepacol            | 4.07 ±0.71 (4.29) | 3.60; 4.53 (2.75-4.89)   |                 |                                                                                                |
|               |                | NitrAdine          | 4.48 ±0.60 (4.54) | 4.02; 4.93 (3.08–5.03)   |                 |                                                                                                |
|               | C. glabrata    | control            | 6.41 ±0.91 (5.59) | 4.64; 6.03 (3.00–6.14)   |                 | control vs. CPC: 0.001<br>control vs. Ni: <0.001<br>RC02 vs. Ni: 0.010                         |
|               |                | R. communis<br>2%  | 5.33 ±0.49 (5.29) | 4.96; 5.72 (4.62 – 6.08) |                 |                                                                                                |
|               |                | R. communis<br>10% | 4.76 ±0.68 (5.06) | 4.23; 5.28 (3.64–5.70)   | 0.004**         |                                                                                                |
|               |                | Cepacol            | 4.59 ±0.37 (4.64) | 4.31; 4.87 (4.00–5.19)   |                 |                                                                                                |
| Mono-species  |                | NitrAdine          | 4.23 ±0.82 (4.31) | 3.60; 4.85 (3.03–5.38)   |                 |                                                                                                |
| biofilm       |                | control            | 5.99 ±0.43 (6.21) | 5.65; 6.32 (5.28–6.54)   |                 | control vs. CPC: <0.001<br>control vs. Ni: 0.012<br>RC02 vs. CPC: 0.014<br>RC10 vs. CPS: 0.015 |
|               | S. aureus      | R. communis<br>2%  | 5.28 ±0.62 (5.16) | 4.80; 5.75 (4.00–6.12)   | 0.014*          |                                                                                                |
|               |                | R. communis<br>10% | 5.24 ±0.41 (5.27) | 4.92; 5.56 (4.61–5.89)   |                 |                                                                                                |
|               |                | Cepacol            | 1.85 ±1.57 (2.30) | 0.60; 3.11 (0.00–3.51)   |                 |                                                                                                |
|               |                | NitrAdine          | 4.62 ±1.16 (5.05) | 3.73; 5.51 (3.26–6.15)   |                 |                                                                                                |
|               |                | control            | 6.41 ±1.27 (6.42) | 5.43; 7.38 (4.43–7.84)   |                 |                                                                                                |
|               | S. mutans      | R. communis<br>2%  | 6.41 ±1.82 (7.61) | 5.01; 7.80 (3.64–7.90)   |                 | control vs. Ni: 0.002<br>RC02 vs. Ni: 0.005<br>RC10 vs. Ni: 0.001<br>CPC vs. Ni: 0.033         |
|               |                | R. communis<br>10% | 6.40 ±1.01 (6.73) | 5.62; 7.18 (4.80 – 7.43) | <0.001*         |                                                                                                |
|               |                | Cepacol            | 6.02 ±0.98 (6.26) | 5.27; 6.78 (4.70–7.60)   |                 |                                                                                                |
|               |                | NitrAdine          | 2.03 ±2.00 (2.81) | 0.49; 3.57 (0.00-4.53)   |                 |                                                                                                |
|               | C. albicans    | control            | 6.42 ±0.42 (6.52) | 6.10; 6.75 (5.85–6.97)   |                 | -                                                                                              |
|               |                | R. communis<br>2%  | 6.05 ±0.54 (6.19) | 5.64; 6.47 (4.86–6.61)   | 0.463*          |                                                                                                |
|               |                | R. communis<br>10% | 5.70 ±1.28 (5.99) | 4.72; 6.68 (3.36–6.74)   |                 |                                                                                                |
|               |                | Cepacol            | 6.05 ±0.62 (6.24) | 5.58; 6.53 (4.55–6.65)   |                 |                                                                                                |
|               |                | NitrAdine          | 5.96 ±0.68 (5.92) | 5.44; 6.48 (4.56–6.78)   |                 |                                                                                                |
|               | C. glabrata    | control            | 6.40 ±0.39 (6.48) | 6.10; 6.70 (5.54–6.92)   |                 | control vs. CPC: 0.035<br>control vs. Ni: 0.006                                                |
|               |                | R. communis<br>2%  | 6.08 ±0.38 (6.17) | 5.78; 6.37 (5.18–6.56)   |                 |                                                                                                |
|               |                | R. communis<br>10% | 5.58 ±1.07 (5.83) | 4.76; 6.40 (2.78–6.27)   | 0.004*          |                                                                                                |
|               |                | Cepacol            | 5.06 ±1.39 (5.76) | 3.99; 6.14 (2.60–6.45)   |                 |                                                                                                |
| Multi-species |                | NitrAdine          | 5.20 ±0.88 (5.45) | 4.52; 5.87 (3.90–6.45)   |                 |                                                                                                |
| biofilm       | S. aureus      | control            | 4.13 ±0.70 (3.97) | 3.59; 4.67 (3.19–5.49)   |                 | control vs. Ni: 0.010<br>RC02 vs. Ni: 0.003<br>RC10 vs. Ni: 0.010<br>CPC vs. Ni: 0.001         |
|               |                | R. communis<br>2%  | 4.35 ±0.78 (4.37) | 3.75; 4.95 (3.49–5.76)   |                 |                                                                                                |
|               |                | R. communis<br>10% | 3.13 ±1.74 (3.72) | 1.79; 4.47 (0.00–5.61)   | 0.349*          |                                                                                                |
|               |                | Cepacol            | 3.89 ±1.15 (4.27) | 3.01; 4.77 (1.91–5.39)   |                 |                                                                                                |
|               |                | NitrAdine          | 3.20 ±1.72 (2.88) | 1.88; 4.52 (0.00–5.84)   |                 |                                                                                                |
|               | S. mutans      | control            | 6.94 ±0.48 (7.01) | 6.58; 7.31 (5.98–7.57)   |                 |                                                                                                |
|               |                | R. communis<br>2%  | 7.09 ±0.33 (7.13) | 6.83; 7.35 (6.60–7.47)   |                 |                                                                                                |
|               |                | R. communis<br>10% | 6.75 ±0.97 (7.12) | 6.00; 7.50 (4.37–7.51)   | <0.001*         | -                                                                                              |
|               |                | Cepacol            | 7.02 ±0.57 (7.11) | 6.59; 7.46 (6.00–7.55)   |                 |                                                                                                |
|               |                | NitrAdine          | 2.27 ±2.75 (0.00) | 0.16; 4.39 (0.00–6.30)   |                 |                                                                                                |

M-mean; SD-standard deviation; Me-median; CI-confidence interval; \* Kruskal-Wallis test and Dunn's post-test; \*\* ANOVA and Tukey's post-test.

Dent Med Probl. 2025;62(4):711–719 717

**Table 3.** Biofilm-covered areas [%] after immersion in different hygiene solutions

| Biofilm | Hygiene<br>solutions | M ±SD (Me)                          | 95% <i>CI</i> (range)        |
|---------|----------------------|-------------------------------------|------------------------------|
| Living  | control              | 41.81 ± 10.34 (40.56) <sup>a*</sup> | 37.10; 46.51 (22.38–61.66)   |
|         | R. communis<br>2%    | 20.62 ±7.41 (21.16) <sup>b*</sup>   | 17.25; 24.00 (8.43–32.44)    |
|         | R. communis<br>10%   | 16.94 ±6.28 (17.08) <sup>b*</sup>   | 14.09; 19.80 (5.61–32.66)    |
|         | Cepacol              | 17.55 ±11.56 (17.45) <sup>b*</sup>  | 12.29; 22.81 (4.63–43.82)    |
|         | NitrAdine            | 7.42 ±5.56 (6.40)°*                 | 4.89; 9.96 (0.00–21.31)      |
| Total   | control              | 64.96 ±12.08 (67.36) <sup>A</sup>   | 59.46; 70.46 (32.07–81.49)   |
|         | R. communis<br>2%    | 46.16 ±9.43 (45.27) <sup>B</sup>    | 41.87; 50.46 (27.55–65.09)   |
|         | R. communis<br>10%   | 36.70 ±12.77 (32.74) <sup>B</sup>   | 30.89; 42.51 (19.88 – 65.77) |
|         | Cepacol              | 45.24 ±11.05 (44.35) <sup>B</sup>   | 40.21; 50.27 (27.08–66.44)   |
|         | NitrAdine            | 20.33 ±9.15 (18.56) <sup>C</sup>    | 16.17; 24.50 (10.08–45.47)   |

Comparisons of the biofilm-covered areas were conducted using the two-way ANOVA with independent levels (the living and total biofilm and the hygiene solutions) and the Bonferroni post-hoc test. Different lowercase letters indicate statistically significant differences among the hygiene solutions in the living biofilm area. Different uppercase letters indicate statistically significant differences among the hygiene solutions in the total biofilm area. \* statistically significant difference between the living biofilm area and the total biofilm area for the same hygiene solution (p < 0.05).

# Discussion

The scientific literature has demonstrated that biofilm development is a remarkable issue in medical device-associated infections.<sup>31</sup> This study was carried out using mono- and multi-species biofilms in order to clarify if biofilms developed by single strains have greater susceptibility to hygiene solutions than those developed by multiple strains. The species association seems to have increased the resistance of *C. albicans* and *S. aureus*, since CPC and Ni had no effect when the microorganisms grew in a multi-species biofilm model.

Promising biological findings involving R. communis suggest that the ethanolic, methanolic or hexane fractions obtained from its leaves and seeds can be an alternative source of therapeutic substances. 17,18,21 Previous studies showed that the solutions obtained by the esterification of ricinoleic acid were beneficial for the control of biofilm formation on acrylic resin and silicone surfaces. 19,20,22,23 Nonetheless, the scientific literature has brought to light a cascade of controversial results regarding the concentration of the R. communis solution capable of exerting biological effects. The investigated concentrations ranged from 2% to 10%; however, until now, no ideal concentration has been established, leaving researchers struggling with conflicting evidence.<sup>8,19,20,22</sup> Therefore, in this study 2 extreme concentrations were evaluated. What should also be taken into account is the fact that RPDs are composed of artificial teeth, acrylic resin and the dental alloy.

Since cell adhesion and biofilm formation depend on the composition of the surface,<sup>32</sup> one cannot assume that hygiene solutions will have the same effect on all surfaces.

The antibiofilm activity of the *R. communis* solutions was slightly disappointing. The solutions only promoted a modest reduction of the viability of *C. albicans*, *C. glabrata* and *S. aureus* in both the mono- and multispecies biofilms, yet the reduction was not statistically significant. Andrade et al., investigating the 2% concentration, indicated that the solution had an intermediate antibiofilm action, comparable to the that of an effervescent tablet (Polident).<sup>19</sup> The authors concluded that single immersion was insufficient for broadly promoting biofilm removal and suggested that association with mechanical brushing would be suitable for better results.<sup>19</sup> Some clinical studies showed biofilm removal capacity, the reduction of the microbial load and the remission of denture-related stomatitis after using *R. communis* solutions.<sup>8,22,24</sup>

The antimicrobial effect of R. communis is probably linked to its toxicity, which is attributed to the protein ricin. The seeds have ricin at a percentage of up to 5%; the biological function of the protein is inhibiting protein synthesis.<sup>33</sup> Worbs et al. indicates that ricin removes adenine from the so-called sarcin-ricin loop of 28S rRNA, thereby preventing the binding of elongation factors and further protein synthesis.<sup>33</sup> As reviewed by Yeboah et al., the composition and properties of castor oil vary with respect to the method of extraction, geographical location and the type of cultivar.<sup>34</sup> Thus, in view of these statements, we suggest 2 different reasons to explain the insufficient antimicrobial effect of R. communis in this study. First, the discrepancy of results presented by the literature, as well as the absence of antibiofilm activity presented here, might be associated with extraction methods and oil purity. Second, as the antimicrobial effect seems to be attributed to the inhibition of protein synthesis, one single 20-minute application would not alter protein synthesis to the point of presenting reduction in the microbial load.

The mouthwash Cepacol was more effective against the mono-species biofilms. In the multi species biofilm pattern, it only reduced the viability of *C. glabrata*. These findings are in line with microscopy evaluations. The images obtained from the CPC group showed a modest reduction of the multi-species biofilm-covered areas, suggesting a limited disaggregating capacity. Cepacol has 0.05% of cetylpyridinium chloride as an active ingredient. This is a quaternary ammonium compound that affects cell integrity by interfering with osmoregulation and homeostasis. Diverse in vitro studies report the antibacterial activity of Cepacol against planktonic bacteria.<sup>35</sup> The apparent discrepancy between our findings and those of other researchers can be related to the antimicrobial susceptibility of microorganisms in biofilm- and non-biofilm-associated states. Biofilm tolerance to antimicrobial agents is about 100-1,000 times greater as compared to that of the planktonic form.<sup>36</sup>

NitrAdine presented the best antibiofilm action against the largest number of species evaluated. In both the mono- and multi-species biofilms, Ni reduced the viability of S. mutans and C. glabrata in about 4 log and 1 log, respectively. The S. aureus mono-species biofilm was also reduced in about 1 log after immersion in Ni. The antimicrobial effect of Ni is attributed to sodium lauryl sulfate and sodium bicarbonate that act through injuring the microbial cell membrane. 37,38 In addition, another active ingredient of Ni, citric acid, is associated with the capability of disturbing the microbial metabolism.<sup>39</sup> Controversies about the antibiofilm effectiveness of effervescent tablets emerge in the scientific literature. Supporting our findings, Coimbra et al. reported that Ni exhibited satisfactory antibiofilm activity, reducing the microbial load and metabolic activity, and the area covered by the multi-species biofilm composed of C. albicans, S. aureus and Pseudomonas aeruginosa.14 Effective antibiofilm activity of Ni against the S. mutans biofilm in a multispecies biofilm model was demonstrated by Lopes Vasconcelos et al.<sup>11</sup>

In agreement with the viability reduction observed in CFU counts, the microscopy images indicated a significant reduction of the living biofilm after immersion in Ni. The reaction between sodium bicarbonate and citric acid, the active ingredients of Ni, in the presence of water leads to the liberation of carbon dioxide, promoting the effervescent aspect. It has been postulated that the release of effervescence can induce a mechanical effect that disrupts biofilms, which could explain the superior ability of effervescent tablets in removing microbial deposits.<sup>40</sup> Nonetheless, despite significant antimicrobial activity, about 31% of the surfaces of the specimens remained covered by the residual aggregated biofilm after immersion in Ni. This can be interpreted as evident antimicrobial action of Ni, but also as its incapability to completely remove all aggregates. It was suggested by the Council on Dental Materials, Instruments, and Equipment that the release of bubbles from effervescent tablets might promote a mechanical action favoring the detaching of the biofilm from the surface of the prosthesis.<sup>40</sup>

The current study was limited by the fact that biofilms were grown considering only ATCC samples. It is recognized that hygiene solutions should be tested on clinical samples employing multidrug-resistant strains. In addition, single short-time immersion was applied. In light of future studies, we believe that investigating distinct multi-species biofilms is essential, considering the high diversity of the buccal microbiome. Combinations involving members of both Gram-positive and Gramnegative groups, as well as other *Streptococcus* spp. or anaerobic rods, could better represent the microbiome of RPDs. Evaluating the clinical effect of RPD immersion in the tested solutions in association with mechanical biofilm removal is another important aspect to be considered in further studies.

## **Conclusions**

Considering the limitations of the study, the findings clearly illustrate that none of the evaluated solutions was able to widely reduce the viability of the microorganisms and the biofilm-covered areas. Although NitrAdine reduced the viability of the largest number of species, it did not alter the microbial load of *C. albicans*. Cepacol reduced the viability of microorganisms in the mono-species biofilms; however, its action was unsatisfactory in the multi-species biofilms.

# Ethics approval and consent to participate

Not applicable.

# **Data availability**

The datasets supporting the findings of the current study are available from the corresponding author on reasonable request.

# **Consent for publication**

Not applicable.

# Use of AI and AI-assisted technologies

Not applicable.

#### **ORCID iDs**

Priscilla Neves Raile ® https://orcid.org/0000-0002-3296-7887
Patricia Almeida Curylofo ® https://orcid.org/0000-0003-4015-5990
Viviane de Cássia Oliveira ® https://orcid.org/0000-0002-0734-0652
Ana Paula Macedo ® https://orcid.org/0000-0002-7716-106X
Glenda Lara Lopes Vasconcelos ® https://orcid.org/0000-0003-0793-9099
Helena Freitas Oliveira Paranhos ® https://orcid.org/0000-0001-5766-6100
Valéria Oliveira Pagnano ® https://orcid.org/0000-0002-3907-191X

#### References

- O'Donnell LE, Millhouse E, Sherry L, et al. Polymicrobial Candida biofilms: Friends and foe in the oral cavity. FEMS Yeast Res. 2015;15(7):fov077. doi:10.1093/femsyr/fov077
- Yumoto H, Hirota K, Hirao K, et al. The pathogenic factors from oral streptococci for systemic diseases. Int J Mol Sci. 2019;20(18):4571. doi:10.3390/ijms20184571
- Borges Felipucci DN, Davi LR, Oliveira Paranhos HF, Bezzon OL, Silva RF, Pagnano VO. Effect of different cleansers on the surface of removable partial denture. *Braz Dent J.* 2011;22(5):392–397. doi:10.1590/s0103-64402011000500008
- Lopes Vasconcelos GL, Curylofo PA, Raile PN, Macedo AP, Oliveira Paranhos HF, Pagnano VO. Effect of alkaline peroxides on the surface of cobalt chrome alloy: An in vitro study. *J Prosthodont*. 2019;28(1):e337–e341. doi:10.1111/jopr.12789
- Curylofo PA, Raile PN, Lopes Vasconcelos GL, Macedo AP, Pagnano VO. Effect of denture cleansers on cobalt-chromium alloy surface: A simulated period of 5 years' use. *J Prosthodont*. 2020;29(2):142–150. doi:10.1111/jopr.12996
- Jose A, Coco BJ, Milligan S, et al. Reducing the incidence of denture stomatitis: Are denture cleansers sufficient? *J Prosthodont*. 2010;19(4):252–257. doi:10.1111/j.1532-849X.2009.00561.x

- de Lucena-Ferreira SC, Ricomini-Filho AP, da Silva WJ, Cury JA, Del Bel Cury AA. Influence of daily immersion in denture cleanser on multispecies biofilm. *Clin Oral Invest*. 2014;18(9):2179–2185. doi:10.1007/s00784-014-1210-9
- Ferraz de Arruda CN, Salles MM, Badaró MM, et al. Effect of sodium hypochlorite and *Ricinus communis* solutions on control of denture biofilm: A randomized crossover clinical trial. *J Prosthet Dent*. 2017;117(6):729–734. doi:10.1016/j.prosdent.2016.08.035
- Axe AS, Varghese R, Bosma M, Kitson N, Bradshaw DJ. Dental health professional recommendation and consumer habits in denture cleansing. J Prosthet Dent. 2016;115(2):183–188. doi:10.1016/j.prosdent.2015.08.007
- Linde N. Mouthwash. In: Wexler P, ed. Encyclopedia of Toxicology. 2<sup>nd</sup> ed. Amsterdam, the Netherlands: Elsevier/Academic Press; 2005:162–163.
- 11. Lopes Vasconcelos GL, Curylofo PA, Targa Coimbra FC, et al. In vitro antimicrobial activity of effervescent denture tablets on the components of removable partial dentures. *Int J Prosthodont*. 2020;33(3):315–320. doi:10.11607/ijp.6436
- de Freitas Oliveira Paranhos H, Bezzon OL, Davi LR, Borges Felipucci DN, Lovato da Silva CH, Pagnano VO. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys. *Braz Oral Res.* 2014;28:51806-83242014000100234. doi:10.1590/1807-3107bor-2014.vol28.0017
- Silva-Lovato CH, de Wever B, Adriaens E, et al. Clinical and antimicrobial efficacy of NitrAdine<sup>™</sup>-based disinfecting cleaning tablets in complete denture wearers. JAppl Oral Sci. 2010;18(6):560–565. doi:10.1590/s1678-77572010000600005
- Coimbra FC, Rocha MM, Oliveira VC, et al. Antimicrobial activity of effervescent denture tablets on multispecies biofilms. *Gerodontology*. 2021;38(1):87–94. doi:10.1111/ger.12500
- Wu SC, Liu F, Zhu K, Shen JZ. Natural products that target virulence factors in antibiotic-resistant *Staphylococcus aureus*. *J Agric Food Chem*. 2019;67(48):13195–13211. doi:10.1021/acs.jafc.9b05595
- Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. *Biotechnol Adv.* 2015;33(8):1582–1614. doi:10.1016/j.biotechadv.2015.08.001
- Hussein HM, Hameed RH, Hameed IH. Screening of bioactive compounds of *Ricinus communis* using GC-MS and FTIR and evaluation of its antibacterial and antifungal activity. Indian J Public Health Res Dev. 2018;9(5):463–469. doi:10.5958/0976-5506.2018.00488.6
- Abdul WM, Hajrah NH, Sabir JS, et al. Therapeutic role of *Ricinus communis* L. and its bioactive compounds in disease prevention and treatment. *Asian Pac J Trop Med.* 2018;11(3):177–185. doi:10.4103/1995-7645.228431
- de Andrade IM, de Andrade KM, Pisani MX, Silva-Lovato CH, de Souza RF, de Freitas Oliveira Paranhos H. Trial of an experimental castor oil solution for cleaning dentures. *Braz Dent J.* 2014;25(1):43–47. doi:10.1590/0103-6440201302327
- Salles MM, de Cássia Oliveira V, Souza RF, Silva-Lovato CH, de Freitas Oliveira Paranhos H. Antimicrobial action of sodium hypochlorite and castor oil solutions for denture cleaning – in vitro evaluation. Braz Oral Res. 2015;29:1–6. doi:10.1590/1807-3107BOR-2015. vol29.0104
- Umaarasu T, Padmavathy K, Thirunavukkarasu D, Rajesh SV, Govindaraj J, Shanmugam G. Evaluation of the antimicrobial activity and phytochemical investigation of the leaf extracts of *Ricinus communis* Linn. against drug-resistant bacterial pathogens. *Drug Invent Today*. 2019;11(6):1299–1303.
- 22. Badaró MM, Salles MM, Fagundes Leite VM, et al. Clinical trial for evaluation of *Ricinus communis* and sodium hypochlorite as denture cleanser. *J Appl Oral Sci.* 2017;25(3):324–334. doi:10.1590/1678-7757-2016-0222
- Pinheiro JB, Vomero MP, do Nascimento C, et al. Genomic identification of microbial species adhering to maxillofacial prostheses and susceptibility to different hygiene protocols. *Biofouling*. 2018;34(1):15–25. doi:10.1080/08927014.2017.1403591
- Pinelli LA, Montandon AA, Corbi SC, Moraes TA, Fais LM. Ricinus communis treatment of denture stomatitis in institutionalized elderly. J Oral Rehabil. 2013;40(5):375–380. doi:10.1111/joor.12039

- Neppelenbroek KH. The importance of daily removal of the denture biofilm for oral and systemic diseases prevention. J Appl Oral Sci. 2015;23(6):547–548. doi:10.1590/1678-77572015ed006
- Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species *Candida albicans* biofilms. *Nat Rev Microbiol*. 2018;16(1):19–31. doi:10.1038/nrmicro.2017.107
- 27. Schlecht LM, Peters BM, Krom BP, et al. Systemic *Staphylococcus aureus* infection mediated by *Candida albicans* hyphal invasion of mucosal tissue. *Microbioliology* (*Reading*). 2015;161(Pt 1):168–181. doi:10.1099/mic.0.083485-0
- Costa L, do Nascimento C, Pagnano de Souza VO, Pedrazzi V. Microbiological and clinical assessment of the abutment and non-abutment teeth of partial removable denture wearers. Arch Oral Biol. 2017;75:74–80. doi:10.1016/j.archoralbio.2016.11.002
- O'Donnell LE, Smith K, Williams C, et al. Dentures are a reservoir for respiratory pathogens. *J Prosthodont*. 2016;25(2):99–104. doi:10.1111/jopr.12342
- 30. Oliveira Paranhos HF, Silva-Lovato CH, de Souza RF, et al. Effect of three methods for cleaning dentures on biofilms formed in vitro on acrylic resin. *J Prosthodont*. 2009;18(5):427–431. doi:10.1111/j.1532-849X.2009.00450.x
- Stewart PS, Bjarnsholt T. Risk factors for chronic biofilm-related infection associated with implanted medical devices. Clin Microbiol Infect. 2020;26(8):1034–1038. doi:10.1016/j.cmi.2020.02.027
- 32. Zhou Y, Xiao Y, Qiu Y, et al. Adhesion and proliferation of cells and bacteria on microchip with different surfaces microstructures. *Biomed Tech (Berl)*. 2016;61(5):475–482. doi:10.1515/bmt-2015-0075
- 33. Worbs S, Köhler K, Pauly D, et al. *Ricinus communis* intoxications in human and veterinary medicine a summary of real cases. *Toxins* (*Basel*). 2011;3(10):1332–1372. doi:10.3390/toxins3101332
- 34. Yeboah A, Ying S, Lu J, et al. Castor oil (*Ricinus communis*): A review on the chemical composition and physicochemical properties. *Food Sci Technol*. 2020;41(2):399–413. doi:10.1590/fst.19620
- Silva VC, de Cássia Oliveira V, Lopes de Sousa AF, et al. Prevalence and susceptibility profile of *Candida* spp. isolated from patients in cancer therapy. *Arch Oral Biol*. 2020;119:104906. doi:10.1016/j.archoralbio.2020.104906
- Macià MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. *Clin Microbiol Infect*. 2014;20(10):981–990. doi:10.1111/1469-0691.12651
- 37. Pellizzaro D, Polyzois G, Machado AL, Giampaolo ET, Sanitá PV, Vergani CE. Effectiveness of mechanical brushing with different denture cleansing agents in reducing in vitro *Candida albicans* biofilm viability. *Braz Dent J.* 2012;23(5):547–554. doi:10.1590/s0103-64402012000500013
- 38. Dhamande MM, Pakhan AJ, Thombare RU, Ghodpage SL. Evaluation of efficacy of commercial denture cleansing agents to reduce the fungal biofilm activity from heat polymerized denture acrylic resin: An in vitro study. *Contemp Clin Dent.* 2012;3(2):168–172. doi:10.4103/0976-237X.96820
- 39. Izumi S, Ryu M, Ueda T, Ishihara K, Sakurai K. Evaluation of application possibility of water containing organic acids for chemical denture cleaning for older adults. *Geriatr Gerontol Int.* 2016;16(3):300–306. doi:10.1111/ggi.12467
- 40. Council on Dental Materials, Instruments, and Equipment. Denture cleansers. *J Am Dent Assoc.* 1983;106(1):77–79. PMID:6574171.