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Abstract
Background. Antimicrobial resistance (AMR) must be predicted to combat antibiotic-resistant illnesses. 
Based on high-priority AMR genomes, it is possible to track resistance and focus treatment to stop global 
outbreaks. Large language models (LLMs) are essential for identifying Porhyromonas gingivalis multi-
resistant efflux genes to prevent resistance. Antibiotic resistance is a serious problem; however, by studying 
specific bacterial genomes, we can predict how resistance develops and find better kinds of treatment.

Objectives. This paper explores using advanced models to predict the sequences of proteins that make 
P. gingivalis resistant to treatment. Understanding this approach could help prevent AMR more effectively. 

Material and methods. This research utilized multi-drug-resistant efflux protein sequences from 
P. gingivalis, identified through UniProt ID A0A0K2J2N6_PORGN, and formatted as FASTA sequences for 
analysis. These sequences underwent rigorous detection and quality assurance processes to ensure their 
suitability for computational analysis. The study employed the DeepBIO framework, which integrates LLMs 
with deep attention networks to process FASTA sequences.

Results. The analysis revealed that the Long Short-Term Memory (LSTM)-attention, ProtBERT and 
BERTGAT models achieved sensitivity scores of 0.9 across the board, with accuracy rates of 89.5%, 88.5% 
and 90.5%, respectively. These results highlight the effectiveness of the models in identifying P. gingivalis 
strains resistant to multiple drugs. Furthermore, the study assessed the specificity of the LSTM-attention, 
ProtBERT and BERTGAT models, which achieved scores of 0.89, 0.87 and 0.90, respectively. Specificity, or 
the genuine negative rate, measures the ability of a model to accurately identify non-resistant cases, which 
is crucial for minimizing false positives in AMR detection.

Conclusions. When utilized clinically, this LLM approach will help prevent AMR, which is a  global problem. 
Understanding this approach may enable researchers to develop more effective treatment strategies that 
target specific resistant genes, reducing the likelihood of resistance development. Ultimately, this approach 
could play a pivotal role in preventing AMR on a global scale.
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Introduction
Antimicrobial resistance (AMR)1,2 is the ability of micro­

organisms to resist the effects of antimicrobial drugs, such 
as antibiotics, antivirals and antiparasitics.3–5 Combating 
antibiotic-resistant diseases requires predicting AMR. 
High-priority AMR genomes can lead surveillance to 
track resistance and focus treatment in order to prevent 
global outbreaks.6–8

Leveraging insights from large language models (LLMs), 
like ProtBERT or BERTGAT, can be employed to explore 
the intricate mechanisms governing the interplay between 
protein sequences, their structural configurations and 
resultant functions.9,10 The essence of  this paradigm lies 
in understanding how the linear arrangement of  amino 
acids, akin to the syntax of a sentence, dictates the three-
dimensional (3D) structure of  a  protein, which, in turn, 
governs its biological functions. By adopting computational 
language models, traditionally used in natural language 
processing (NLP), we gain a  valuable tool to dissect and 
decipher the functions of proteins.11–13 This approach allows 
researchers to unveil the nuanced relationships between 
amino acid sequences, the structural motifs they form 
and the functional roles they play in biological processes. 
Treating protein sequences as linguistic entities provides 
a powerful framework for unraveling the language of  life 
encoded in these fundamental biological molecules.14

The attention-based Long Short-Term Memory (LSTM-
attention) network is a method that analyzes big datasets 
and looks for patterns that point to AMR, using state-
of-the-art algorithms.15–22 Co-AMPpred is one instance 
of  a  machine learning method for AMR prediction.23,24 
This tool distinguishes between antimicrobial peptides 
(AMPs) and non-AMPs by combining physicochemical 
characteristics and composition-based sequences through 
machine learning techniques.

An important global health concern is periodontitis, 
an  immune-inflammatory infectious disease, mostly 
caused by Porphyromonas gingivalis.25,26 The bacterium 

exhibits a  variety of  omics and phylogeny information, 
making it a  significant factor in severe periodontitis. 
Treatment for P. gingivalis is becoming more difficult due 
to its growing resistance to antibiotics, which highlights 
the need for a  deeper comprehension of  its resistance 
mechanisms. In particular, the resistance-nodulation-
division (RND) family of efflux pumps is a major contributor 
to the AMR of  P.  gingivalis. These pumps, including 
proteins such as AcrA, AcrB and TolC,27–30 block the entry 
of antimicrobial drugs into the bacterial cell, contributing 
to multi-drug resistance (MDR).

Porphyromonas gingivalis-produced gingipains and 
virulence factors31,32 add to the complexity of the situation. 
Due to gingipains, P. gingivalis can elude the host immune 
system, which contributes to AMR. The integrated 
protein–protein interaction network (PPIN), which 
includes virulence regulators and efflux pump proteins, was 
subjected to topological and functional analysis; this analysis 
identified genes crucial for understanding the relationships 
across cellular systems in P. gingivalis.31 The bifunctional 
NAD(P)H-hydrate repair enzyme A0A212GBI3_PORGN 
is one of the most prevalent resistant efflux proteins.33–37 
It is essential for the bifunctional enzyme that it catalyzes 
the dehydration of  the S-form of  NAD(P)HX38 at the 
expense of ADP, which is converted to AMP, as well as the 
epimerization of the S- and R-forms of NAD(P)HX.

Identifying P.  gingivalis multi-resistant efflux genes 
with the use of LLMs is crucial for preventing resistance. 
The present study aimed to analyze and explore Graph 
Attention Networks (GATs) and protein-based language 
models for predicting P. gingivalis resistant efflux protein 
sequences.

Methods
Using UniProt,39 the following sequences of  multi-

drug resistant proteins of  P.  gingivalis were download­
ed: A0A0K2J2N6_PORGN; A0A212GBI3_PORGN; 

Highlights

•• By examining efflux protein sequences, advanced artificial intelligence (AI) models, such as LSTM-attention, 
ProtBERT and BERTGAT, can accurately (up to 90.5%) and sensitively (~0.90) predict antimicrobial resistance 
(AMR) in Porphyromonas gingivalis.

•• With the highest accuracy (90.5%) and specificity (0.90), BERTGAT performed better than other models. This 
indicates that adding graph-based attention mechanisms enhances AMR prediction by more accurately capturing 
biological relationships.

•• The SHAP, UMAP, ROC, PR, and UpSet plots confirmed model interpretability and robustness, indicating their 
possible clinical use in detecting resistant strains and directing precise antibiotic tactics.

•• The study emphasizes the significance of targeting efflux proteins for novel drug design to combat multidrug-
resistant P. gingivalis, a keystone pathogen in periodontitis.

•• Notwithstanding encouraging findings, the small dataset size and the absence of external validation are drawbacks 
that call for additional research with bigger and more varied datasets.
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A0A2D2N4E3_PORGN; A0A0E2LNT1_PORGN; 
A0A829KLL9_PORGN; U2K1P7_PORGN; Q7MXT9_PORGI; 
A0A1R4DUJ6_PORGN; and A0A212FQN2_PORGN. 
The identified FASTA sequences underwent a  thorough 
quality check to ensure that there were no biases during 
their entry. Additionally, the sequences were formatted 
according to the prescribed format based on the DeepBIO 
tool for LLMs and deep attention networks.40

DeepBIO 

Academics can construct a deep learning architecture to 
address any biological problem with the help of  DeepBIO, 
a one-stop web service. In addition to visualizing biologi­
cal sequencing data, DeepBIO compares and enhances 
deep learning models. It offers base functional annota­
tion tasks, with in-depth interpretations and graphical 
visualizations, and conservation motif analysis to confirm 
site dependability, and well-trained deep learning archi­
tectures for more than 20 tasks. The sequence-
based datasets were divided into the training and test 
sets using DeepBio. We randomly divided each dataset 
into 1,000  training and 200 testing sets to optimize 
hyperparameters and analyze performance.

BERTGAT 

BERTGAT41 is a neural network model that combines 
the pre-trained language model Bidirectional Encoder 
Representations from Transformers (BERT) with 
GAT.16,42 BERT extracts text features,41 while GAT learns 
the sentence–word relationships.26,43,44 Transformer-
based language models are preferred over recurrent neural 
networks (RNNs). Pre-trained BERT representations 
are fine-tuned to generate state-of-the-art models for 
wide-ranging text-to-structured query language (SQL) 
workloads with one extra output layer.

ProtBERT 

The provided search results do not contain specific 
information about the full code architecture of  ProtBERT 
and its detailed steps. However, based on the available 
information, it was possible to provide a general outline 
of the architecture and the steps involved in using ProtBERT 
for protein sequence prediction.41

ProtBERT architecture and steps for 
protein sequence prediction 

Pre-training 

ProtBERT is pre-trained on a  large dataset of  protein 
sequences, representing the entire known protein space, 
using a  masked language modeling task combined with 

a novel Gene Ontology (GO) annotation prediction task. 
The architecture of  ProtBERT consists of  local and global 
representations, allowing the end-to-end processing 
of protein sequences and GO annotations.

Fine-tuning 

After pre-training, the ProtBERT model is fine-tuned 
on specific protein-related tasks, such as protein sequence 
classification or function prediction. Fine-tuning involves 
initializing the model from the pre-trained state, freezing 
some layers, training additional, fully connected layers, 
and then unfreezing all layers for further training.

Model evaluation 

The fine-tuned ProtBERT model is evaluated on diverse 
benchmarks covering various protein properties to 
assess its performance. The ProtBERT model is built on 
Keras/TensorFlow and is available through the Hugging 
Face model hub. The code for using ProtBERT involves 
loading the pre-trained model, fine-tuning it on specific 
protein-related tasks, and utilizing it for protein sequence 
prediction and analysis.

LSTM-attention model 

LSTM15,17 and attention mechanisms are combined in 
LSTM-attention, a deep learning architecture, to enhance 
sequence prediction task performance. The following 
steps are needed to put the LSTM-attention model into 
practice:
1.	Data Preparation: The first stage is to prepare the input 

data for the model. This could entail activities like feature 
extraction, encoding and tokenization.

2.	Model Architecture: An LSTM layer and an attention 
layer form the LSTM-attention model. After process­
ing the input sequence, the LSTM layer creates a series 
of  hidden states. The more pertinent states are given 
more weight when the attention layer computes a weighted 
sum of the hidden states.

3.	Training: The model is trained using the appropriate 
loss function and optimization technique with the pre­
pared data. The parameters of the model are adjusted 
during training to minimize the loss function.

4.	Evaluation: After training, the performance of  the model 
is assessed on an  independent test set. This entails 
calculating metrics like the F1 score, recall, accuracy, 
and precision.

5.	Prediction: The model can forecast new sequences 
after evaluation. The trained model receives the input 
sequence and the learned weights generate the output.

6.	Fine-tuning: The model can be further adjusted on 
particular tasks or datasets to boost performance. This 
involves changing the hyperparameters or architecture 
of the model to fit a given task better (Table 1).
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Results
LSTM-attention, ProtBERT and BERTGAT were used to 

find the hidden features and weights in the FASTA protein 
sequences; then, backpropagation algorithms with ADAM 
optimizer and 50 iterations fine-tuned the model.

LSTM-attention, ProtBERT and BERTGAT had sensi­
tivity of 0.90, 0.90 and 0.91, respectively (TP / (TP + FN); 
TP – true positive, FN – false negative). Specificity, or the 
true negative rate, is the proportion of  actual negatives 
correctly predicted as negatives. The specificity of LSTM-
attention, ProtBERT and BERTGAT was 0.89, 0.87 and 
0.90, respectively (TN / (TN + FP); TN – true negative, 
FP – false positive).

ROC curve 

The receiver-operating characteristic (ROC) curve 
shows the trade-off between the true positive rate (sensi­
tivity) and false positive rate (1-specificity) of the model 

over the categorization thresholds. Regarding LSTM-
attention, ProtBERT and BERTGAT, high true positive 
rates are shown by the ROC curve in the upper left corner 
of the plot.

PR curve 

The trade-off between recall and precision for binary 
classifiers with different probability thresholds is depict­
ed by the precision–recall (PR) curve. While precision is 
the fraction of positive predictions, recall is the percent­
age of  accurately expected positives. This model’s per­
formance with uneven classes is made public. The area 
under the PR curve (AUC-PR) is a widely used metric to 
summarize the classifier performance. Higher AUC-PR 
values for LSTM-attention, ProtBERT and BERTGAT 
denote improved model performance.

An epoch plot is a graph showing the accuracy and loss 
of a machine learning model over training. It is an effec­
tive diagnostic tool for overfitting and other model issues. 
The number of epochs or iterations the model has been 
trained on is shown by the X-axis in an epoch plot. The 
accuracy or loss of  the model is plotted on the Y-axis. 
The loss indicates how effectively the model predicts the 
proper output for a given input. Accuracy gauges whether 
the predictions of the model are accurate.

UpSet plot 

The frequency of common items between groups can 
be ascertained by comparing the intersection diameters. 
While smaller crossings imply less overlap, larger inter­
sections show more overlap between groups. In a vertical 
UpSet plot, rows represent intersections and matrix 
columns represent sets. Each row has filled intersection 
cells that show how the rows are related to each other.

Uniform Manifold Approximation and Projection 
(UMAP) creates a weighted graph from high-dimensional 
data to show clustering patterns, with the edge strength 
reflecting how ‘close’ the points are. Projecting this graph 
lowers its dimension. This data shows algorithm cluster­
ing. UMAP is a non-linear dimension reduction method 
for embedding high-dimensional data in low-dimensional 
space. It assumes that high-dimensional data points 
should be close to low-dimensional space.

SHAP values 

The predictive value of  each feature is quantified in 
a  machine learning model. All possible feature combi­
nations are considered, along with the relative contribu­
tions of  each feature to the prediction when coupled 
with a  subset of  features, to compute the value. When 
a  feature enhances the prediction, the Shapley Additive 
Explanations (SHAP) red value is positive. A feature with 
a negative SHAP blue value is less predictive.

Table 1. Parameters of the Protein Language Model (PLM)

Cuda: TRUE TRUE2 TRUE3

Seed: 43 43 43

num_workers: 4 4 4

num_class: 2 2 2

Kmer: 3 3 3

heatmap_seq:

save_figure_type: png png png

Mode: train-test train-test train-test

Type: prot prot prot

model: BertGAT LSTMAttention prot_bert

datatype: userprovide userprovide userprovide

interval_log: 10 10 10

interval_valid: 1 1 1

interval_test: 1 1 1

Epoch: 50 50 50

Optimizer: Adam Adam Adam

loss_func: CE CE CE

batch_size: 4 8 32

LR: 1.00E-05 0.0001 0.0001

Reg: 0.0025 0.0025 0.0025

Gamma: 2 2 2

Alpha: 0.25 0.25 0.25

max_len: 35 207 52

dim_embedding: 32 32 32

minimode: modelCompare modelCompare modelCompare

if_use_FL: 0 0 0

if_data_aug: 0 0 0

if_data_enh: 0 0 0

CDHit: ['1'] ['1'] ['1']
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Discussion
Antimicrobial drug-resistant periodontal bacteria45–47 

are characterized by efflux pumps – proteins that remove 
antimicrobial medications from the cell, thus preventing 
the drugs from killing the bacteria. Bacteria can also adapt 
their outer membrane to block antimicrobial medica­
tions or change the target site of  the drug to lessen its 
efficacy.36,48 These pathways and others cause antibiotic 
resistance in periodontitis patients. Whole-genome 
sequencing can detect AMR genes34,35,49,50 and mutations, 
assessing the resistance potential. Large genomic, pheno­
typic and clinical datasets can be used to train machine 
learning algorithms to predict resistance and discover 
the key AMR genes. Prolonged illness, more expensive 
second-line therapies and missed productivity can strain 
healthcare systems and national economies. Predicting 
AMR in globally prevailing periodontal infections, espe­
cially for the keystone pathogens like P. gingivalis, is im­
portant for preventing resistance from spreading across 
continents. Antimicrobial resistance is a growing concern 
in the field of periodontitis research. It refers to the ability 
of microorganisms, such as bacteria, to resist the effects 
of antimicrobial drugs.1,51

Large language models have revolutionized various 
fields, including protein sequence prediction. In this 
study, models such as LSTM-attention, ProtBERT and 
BERTGAT demonstrated high predictive performance, 
with accuracy rates reaching up to 90.5% (Table  2, 

Fig. 1–5). Large language models have also shown strong 
results in broader protein-related tasks, such as structure 
prediction and protein design, in previous studies.

The observed performance differences between LSTM-
attention, ProtBERT and BERTGAT, with accuracy rates 
of  89.5%, 88.5% and 90.5%, respectively, deepen the 

Fig. 2. Accuracy of the models

MMC – Matthews correlation coefficient.

Fig. 1. Distribution of positive (antimicrobial drug-resistant) and negative 
(non-resistant) sequences in the training and test datasets

The letters on the X-axis represent the subsets or identifiers of the input 
sequences used during model training and evaluation.

Table 2. Accuracy of the LSTM-attention, ProtBERT and BERTGAT models

Model name Accuracy Sensitivity Specificity AUC

LSTM-attention 0.895 0.90 0.89 0.948

ProtBERT 0.885 0.90 0.87 0.941

BERTGAT 0.905 0.91 0.90 0.951

AUC – area under the curve (referring the receiver-operating characteristic 
(ROC) curve unless otherwise specified). Accuracy is defined as the overall 
proportion of correctly classified cases (true positives and true negatives) 
among all predictions.

Fig. 3. Bar chart of the accuracy of the models

Fig. 4. Receiver-operating characteristic (ROC) and precision–recall (PR) 
curves of the plot

Fig. 5. Epoch plot of all iterations with algorithms
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interpretation of the results in the context of model archi­
tecture implications.52,53 LSTM-attention utilizes long 
short-term memory units and attention mechanisms, 
while ProtBERT incorporates a transformer-based archi­
tecture, specifically designed for protein sequence data, 
and BERTGAT incorporates graph attention mecha­
nisms. The higher accuracy of BERTGAT suggests that its 
increased model complexity and ability to capture graph 
structures in the data have contributed to improved per­
formance. Data representation is another important 
factor to consider. The comparable accuracy of  LSTM-
attention and ProtBERT suggests that their respective data 
representations are effective for a  given task. Biological 
relevance is a critical consideration when evaluating model 
performance. Protein sequence analysis is inherently 
tied to biology, and it is important to assess how well the 

models align with biological knowledge.50,52,54 While all 
3 models demonstrated high accuracy, it is necessary to 
delve deeper into the interpretation to understand if the 
superior accuracy of  BERTGAT is biologically relevant 
or if other factors drive it. Overall, the observed perfor­
mance differences between LSTM-attention, ProtBERT 
and BERTGAT highlight the impact of  model complex­
ity, data representation and biological relevance. Further 
analysis and interpretation are required to uncover the 
specific advantages of each architecture and their implica­
tions in the context of protein sequence analysis.

Previous state-of-the-art models, like ProteinBERT,55–57 
a  universal deep learning model for protein sequences, 
leveraging the transformer architecture,58–60 are commonly 
used in NLP tasks. In addition to language models, various 
machine learning methods and algorithms are used in 
protein sequence prediction, such as graph neural networks 
and deep learning-based algorithms like BERTGAT and 
LSTM-attention.15–17 ProtBERT is a  transformer-based 
language model trained on a  large corpus of  protein 
sequences to learn representations that capture important 
structural and functional information.24 This study com­
pared LLMs vs. GAT-based algorithms57,61,62 in predicting 
AMR sequencing, and the performance of the model was 
shown using the SHAP,63–65 UMAP and UpSet plot analysis 
(Fig. 6–8), similar to previous studies for performance.Fig. 6. UpSet intersection diagram of the models with positive and 

negative classification

Fig. 7. Uniform Manifold Approximation and Projection (UMAP) plot of the models

neg – negative; pos – positive.

Fig. 8. Shapley Additive Explanations (SHAP) performance of the models
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Targeting P.  gingivalis efflux proteins is important for 
novel antibiotic drug design. These prediction models 
could point to resistance mutation sequences and prevent 
the development of AMR in periodontitis patients.66,67 

This study compared the performance of  LLMs and 
GAT-based algorithms in predicting AMR sequencing. 
The model’s performance was evaluated using the SHAP, 
UMAP and UpSet plot analysis, previously employed 
to assess the performance of  similar prediction models. 
The study also highlighted the significance of  target­
ing P. gingivalis efflux proteins to design novel antibiotic 
drugs. However, it is important to acknowledge that the 
current study has limitations. One major limitation is the 
small sample size and the lack of the external validation 
of the independent datasets used in the study.52 Future re­
search should address this limitation by including larger 
sample sizes to ensure the reliability and generalizability 
of the prediction model. Furthermore, further investiga­
tions are needed to validate the model’s performance in 
diverse datasets and to explore its applicability for other 
oral microbes.

Conclusions
Preventing the spread of  antimicrobial resistance 

(AMR) is a  primary global concern, and large language 
models (LLMs), when applied clinically, may help prevent 
this phenomenon.
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