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Abstract

Background. Antimicrobial resistance (AMR) must be predicted to combat antibiotic-resistant illnesses.
Based on high-priority AMR genomes, it is possible to track resistance and focus treatment to stop global
outbreaks. Large language models (LLMs) are essential for identifying Porhyromonas gingivalis multi-
resistant efflux genes to prevent resistance. Antibiotic resistance is a serious problem; however, by studying
specific bacterial genomes, we can predict how resistance develops and find better kinds of treatment.

Objectives. This paper explores using advanced models to predict the sequences of proteins that make
P gingivalis resistant to treatment. Understanding this approach could help prevent AMR more effectively.

Material and methods. This research utilized multi-drug-resistant efflux protein sequences from
F gingivalis, identified through UniProt ID AOAOK2J2N6_PORGN, and formatted as FASTA sequences for
analysis. These sequences underwent rigorous detection and quality assurance processes to ensure their
suitability for computational analysis. The study employed the DeepBIO framework, which integrates LLMs
with deep attention networks to process FASTA sequences.

Results. The analysis revealed that the Long Short-Term Memory (LSTM)-attention, ProtBERT and
BERTGAT models achieved sensitivity scores of 0.9 across the board, with accuracy rates of 89.5%, 88.5%
and 90.5%, respectively. These results highlight the effectiveness of the models in identifying P gingivalis
strains resistant to multiple drugs. Furthermore, the study assessed the specificity of the L STM-attention,
ProtBERT and BERTGAT models, which achieved scores of 0.89, 0.87 and 0.90, respectively. Specificity, or
the genuine negative rate, measures the ability of a model to accurately identify non-resistant cases, which
is crucial for minimizing false positives in AMR detection.

Conclusions. When utilized dlinically, this LLM approach will help prevent AMR, which is a global problem.
Understanding this approach may enable researchers to develop more effective treatment strategies that
target speific resistant genes, reducing the likelihood of resistance development. Ultimately, this approach
could play a pivotal role in preventing AMR on a global scale.
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Highlights
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* By examining efflux protein sequences, advanced artificial intelligence (AI) models, such as LSTM-attention,
ProtBERT and BERTGAT, can accurately (up to 90.5%) and sensitively (~0.90) predict antimicrobial resistance

(AMR) in Porphyromonas gingivalis.

» With the highest accuracy (90.5%) and specificity (0.90), BERTGAT performed better than other models. This
indicates that adding graph-based attention mechanisms enhances AMR prediction by more accurately capturing

biological relationships.

* The SHAP, UMAP, ROC, PR, and UpSet plots confirmed model interpretability and robustness, indicating their
possible clinical use in detecting resistant strains and directing precise antibiotic tactics.

* The study emphasizes the significance of targeting efflux proteins for novel drug design to combat multidrug-
resistant P, gingivalis, a keystone pathogen in periodontitis.

* Notwithstanding encouraging findings, the small dataset size and the absence of external validation are drawbacks
that call for additional research with bigger and more varied datasets.

Introduction

Antimicrobial resistance (AMR)*? is the ability of micro-
organisms to resist the effects of antimicrobial drugs, such
as antibiotics, antivirals and antiparasitics.>> Combating
antibiotic-resistant diseases requires predicting AMR.
High-priority AMR genomes can lead surveillance to
track resistance and focus treatment in order to prevent
global outbreaks.®-8

Leveraging insights from large language models (LLMs),
like ProtBERT or BERTGAT, can be employed to explore
the intricate mechanisms governing the interplay between
protein sequences, their structural configurations and
resultant functions.>!® The essence of this paradigm lies
in understanding how the linear arrangement of amino
acids, akin to the syntax of a sentence, dictates the three-
dimensional (3D) structure of a protein, which, in turn,
governs its biological functions. By adopting computational
language models, traditionally used in natural language
processing (NLP), we gain a valuable tool to dissect and
decipher the functions of proteins.!!~!3 This approach allows
researchers to unveil the nuanced relationships between
amino acid sequences, the structural motifs they form
and the functional roles they play in biological processes.
Treating protein sequences as linguistic entities provides
a powerful framework for unraveling the language of life
encoded in these fundamental biological molecules.*

The attention-based Long Short-Term Memory (LSTM-
attention) network is a method that analyzes big datasets
and looks for patterns that point to AMR, using state-
of-the-art algorithms.’>22 Co-AMPpred is one instance
of a machine learning method for AMR prediction.?*?*
This tool distinguishes between antimicrobial peptides
(AMPs) and non-AMPs by combining physicochemical
characteristics and composition-based sequences through
machine learning techniques.

An important global health concern is periodontitis,
an immune-inflammatory infectious disease, mostly
caused by Porphyromonas gingivalis>>* The bacterium

exhibits a variety of omics and phylogeny information,
making it a significant factor in severe periodontitis.
Treatment for P, gingivalis is becoming more difficult due
to its growing resistance to antibiotics, which highlights
the need for a deeper comprehension of its resistance
mechanisms. In particular, the resistance-nodulation-
division (RND) family of efflux pumps is a major contributor
to the AMR of P gingivalis. These pumps, including
proteins such as AcrA, AcrB and TolC,?-%* block the entry
of antimicrobial drugs into the bacterial cell, contributing
to multi-drug resistance (MDR).

Porphyromonas  gingivalis-produced gingipains and
virulence factors®*? add to the complexity of the situation.
Due to gingipains, P. gingivalis can elude the host immune
system, which contributes to AMR. The integrated
protein—protein interaction network (PPIN), which
includes virulence regulators and efflux pump proteins, was
subjected to topological and functional analysis; this analysis
identified genes crucial for understanding the relationships
across cellular systems in P gingivalis.3* The bifunctional
NAD(P)H-hydrate repair enzyme A0A212GBI3_PORGN
is one of the most prevalent resistant efflux proteins.?*-3”
It is essential for the bifunctional enzyme that it catalyzes
the dehydration of the S-form of NAD(P)HX3® at the
expense of ADP, which is converted to AMP, as well as the
epimerization of the S- and R-forms of NAD(P)HX.

Identifying P gingivalis multi-resistant efflux genes
with the use of LLMs is crucial for preventing resistance.
The present study aimed to analyze and explore Graph
Attention Networks (GATs) and protein-based language
models for predicting P. gingivalis resistant efflux protein
sequences.

Methods

Using UniProt,* the following sequences of multi-
drug resistant proteins of P gingivalis were download-
ed: AOAOK2J2N6_PORGN; A0A212GBI3_PORGN;
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AO0A2D2N4E3_PORGN; AOAOE2LNT1_PORGN;
AO0A829KLL9_PORGN; U2K1P7_PORGN; Q7MXT9_PORGI
AOAIR4DUJ6_PORGN; and AO0A212FQN2_PORGN.
The identified FASTA sequences underwent a thorough
quality check to ensure that there were no biases during
their entry. Additionally, the sequences were formatted
according to the prescribed format based on the DeepBIO
tool for LLMs and deep attention networks.*

DeepBIO

Academics can construct a deep learning architecture to
address any biological problem with the help of DeepBIO,
a one-stop web service. In addition to visualizing biologi-
cal sequencing data, DeepBIO compares and enhances
deep learning models. It offers base functional annota-
tion tasks, with in-depth interpretations and graphical
visualizations, and conservation motif analysis to confirm
site dependability, and well-trained deep learning archi-
tectures for more than 20 tasks. The sequence-
based datasets were divided into the training and test
sets using DeepBio. We randomly divided each dataset
into 1,000 training and 200 testing sets to optimize
hyperparameters and analyze performance.

BERTGAT

BERTGAT* is a neural network model that combines
the pre-trained language model Bidirectional Encoder
Representations from Transformers (BERT) with
GAT.'®42 BERT extracts text features,*! while GAT learns
the sentence—word relationships.264*#* Transformer-
based language models are preferred over recurrent neural
networks (RNNs). Pre-trained BERT representations
are fine-tuned to generate state-of-the-art models for
wide-ranging text-to-structured query language (SQL)
workloads with one extra output layer.

ProtBERT

The provided search results do not contain specific
information about the full code architecture of ProtBERT
and its detailed steps. However, based on the available
information, it was possible to provide a general outline
of the architecture and the steps involved in using ProtBERT
for protein sequence prediction.*!

ProtBERT architecture and steps for
protein sequence prediction

Pre-training

ProtBERT is pre-trained on a large dataset of protein
sequences, representing the entire known protein space,
using a masked language modeling task combined with
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a novel Gene Ontology (GO) annotation prediction task.
The architecture of ProtBERT consists of local and global
representations, allowing the end-to-end processing
of protein sequences and GO annotations.

Fine-tuning

After pre-training, the ProtBERT model is fine-tuned
on specific protein-related tasks, such as protein sequence
classification or function prediction. Fine-tuning involves
initializing the model from the pre-trained state, freezing
some layers, training additional, fully connected layers,
and then unfreezing all layers for further training.

Model evaluation

The fine-tuned ProtBERT model is evaluated on diverse
benchmarks covering various protein properties to
assess its performance. The ProtBERT model is built on
Keras/TensorFlow and is available through the Hugging
Face model hub. The code for using ProtBERT involves
loading the pre-trained model, fine-tuning it on specific
protein-related tasks, and utilizing it for protein sequence
prediction and analysis.

LSTM-attention model

LSTM!>'7 and attention mechanisms are combined in
LSTM-attention, a deep learning architecture, to enhance
sequence prediction task performance. The following
steps are needed to put the LSTM-attention model into
practice:
1.Data Preparation: The first stage is to prepare the input

data for the model. This could entail activities like feature

extraction, encoding and tokenization.

2.Model Architecture: An LSTM layer and an attention
layer form the LSTM-attention model. After process-
ing the input sequence, the LSTM layer creates a series
of hidden states. The more pertinent states are given
more weight when the attention layer computes a weighted
sum of the hidden states.

3.Training: The model is trained using the appropriate
loss function and optimization technique with the pre-
pared data. The parameters of the model are adjusted
during training to minimize the loss function.

4.Evaluation: After training, the performance of the model
is assessed on an independent test set. This entails
calculating metrics like the F1 score, recall, accuracy,
and precision.

5.Prediction: The model can forecast new sequences
after evaluation. The trained model receives the input
sequence and the learned weights generate the output.

6.Fine-tuning: The model can be further adjusted on
particular tasks or datasets to boost performance. This
involves changing the hyperparameters or architecture

of the model to fit a given task better (Table 1).
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Table 1. Parameters of the Protein Language Model (PLM)

Seed: 43 43 43
num_workers: 4 4 4
num_class: 2 2 2
Kmer: 3 3 3

heatmap_seq:

save_figure_type: png png png
Mode: train-test train-test train-test
Type: prot prot prot
model: BertGAT LSTMAttention prot_bert
datatype: userprovide userprovide userprovide
interval_log: 10 10 10
interval_valid: 1 1 1

interval_test: 1 1 1

Epoch: 50 50 50
Optimizer: Adam Adam Adam
loss_func: CE CE CE
batch_size: 4 8 32
LR: 1.00E-05 0.0001 0.0001
Reg: 0.0025 0.0025 0.0025
Gamma: 2 2 2
Alpha: 0.25 025 0.25
max_len: 35 207 52
dim_embedding: 32 32 32
minimode: modelCompare  modelCompare  modelCompare
if_use_FL: 0 0 0
if_data_aug: 0 0 0
if_data_enh: 0 0 0
CDHit: [11] (1] [11]
Results

LSTM-attention, ProtBERT and BERTGAT were used to
find the hidden features and weights in the FASTA protein
sequences; then, backpropagation algorithms with ADAM
optimizer and 50 iterations fine-tuned the model.

LSTM-attention, ProtBERT and BERTGAT had sensi-
tivity of 0.90, 0.90 and 0.91, respectively (TP / (TP + EN);
TP - true positive, FN — false negative). Specificity, or the
true negative rate, is the proportion of actual negatives
correctly predicted as negatives. The specificity of LSTM-
attention, ProtBERT and BERTGAT was 0.89, 0.87 and
0.90, respectively (TN / (TN + FP); TN - true negative,
FP — false positive).

ROC curve

The receiver-operating characteristic (ROC) curve
shows the trade-off between the true positive rate (sensi-
tivity) and false positive rate (1-specificity) of the model

PK. Yadalam et al. GATs and NLP for predicting the AMR of P, gingivalis

over the categorization thresholds. Regarding LSTM-
attention, ProtBERT and BERTGAT, high true positive
rates are shown by the ROC curve in the upper left corner
of the plot.

PR curve

The trade-off between recall and precision for binary
classifiers with different probability thresholds is depict-
ed by the precision—recall (PR) curve. While precision is
the fraction of positive predictions, recall is the percent-
age of accurately expected positives. This model’s per-
formance with uneven classes is made public. The area
under the PR curve (AUC-PR) is a widely used metric to
summarize the classifier performance. Higher AUC-PR
values for LSTM-attention, ProtBERT and BERTGAT
denote improved model performance.

An epoch plot is a graph showing the accuracy and loss
of a machine learning model over training. It is an effec-
tive diagnostic tool for overfitting and other model issues.
The number of epochs or iterations the model has been
trained on is shown by the X-axis in an epoch plot. The
accuracy or loss of the model is plotted on the Y-axis.
The loss indicates how effectively the model predicts the
proper output for a given input. Accuracy gauges whether
the predictions of the model are accurate.

UpSet plot

The frequency of common items between groups can
be ascertained by comparing the intersection diameters.
While smaller crossings imply less overlap, larger inter-
sections show more overlap between groups. In a vertical
UpSet plot, rows represent intersections and matrix
columns represent sets. Each row has filled intersection
cells that show how the rows are related to each other.

Uniform Manifold Approximation and Projection
(UMAP) creates a weighted graph from high-dimensional
data to show clustering patterns, with the edge strength
reflecting how ‘close’ the points are. Projecting this graph
lowers its dimension. This data shows algorithm cluster-
ing. UMAP is a non-linear dimension reduction method
for embedding high-dimensional data in low-dimensional
space. It assumes that high-dimensional data points
should be close to low-dimensional space.

SHAP values

The predictive value of each feature is quantified in
a machine learning model. All possible feature combi-
nations are considered, along with the relative contribu-
tions of each feature to the prediction when coupled
with a subset of features, to compute the value. When
a feature enhances the prediction, the Shapley Additive
Explanations (SHAP) red value is positive. A feature with
a negative SHAP blue value is less predictive.
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Discussion

Antimicrobial drug-resistant periodontal bacteria®®~*

are characterized by efflux pumps — proteins that remove
antimicrobial medications from the cell, thus preventing
the drugs from killing the bacteria. Bacteria can also adapt
their outer membrane to block antimicrobial medica-
tions or change the target site of the drug to lessen its
efficacy.?**® These pathways and others cause antibiotic
resistance in periodontitis patients. Whole-genome
sequencing can detect AMR genes®**>4°%0 and mutations,
assessing the resistance potential. Large genomic, pheno-
typic and clinical datasets can be used to train machine
learning algorithms to predict resistance and discover
the key AMR genes. Prolonged illness, more expensive
second-line therapies and missed productivity can strain
healthcare systems and national economies. Predicting
AMR in globally prevailing periodontal infections, espe-
cially for the keystone pathogens like P. gingivalis, is im-
portant for preventing resistance from spreading across
continents. Antimicrobial resistance is a growing concern
in the field of periodontitis research. It refers to the ability
of microorganisms, such as bacteria, to resist the effects
of antimicrobial drugs.!

Large language models have revolutionized various
fields, including protein sequence prediction. In this
study, models such as LSTM-attention, ProtBERT and
BERTGAT demonstrated high predictive performance,
with accuracy rates reaching up to 90.5% (Table 2,

Table 2. Accuracy of the LSTM-attention, ProtBERT and BERTGAT models

Model name | Accuracy | Sensitivity | Specificity AUC
|LSTM-attention 0895 090 089 0948 |
‘ ProtBERT 0.885 0.90 0.87 0.941 ‘
‘ BERTGAT 0.905 0.91 0.90 0.951 ‘

AUC - area under the curve (referring the receiver-operating characteristic
(ROC) curve unless otherwise specified). Accuracy is defined as the overall
proportion of correctly classified cases (true positives and true negatives)
among all predictions.
3,500 -
3,000
2,500 -
2,000 -

1,500 -

1,000 -
500

0
ARNDCQEGH I LKMFPSTWYYV

@ positives negatives

Fig. 1. Distribution of positive (antimicrobial drug-resistant) and negative
(non-resistant) sequences in the training and test datasets

The letters on the X-axis represent the subsets or identifiers of the input
sequences used during model training and evaluation.
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Fig. 1-5). Large language models have also shown strong
results in broader protein-related tasks, such as structure
prediction and protein design, in previous studies.

The observed performance differences between LSTM-
attention, ProtBERT and BERTGAT, with accuracy rates
of 89.5%, 88.5% and 90.5%, respectively, deepen the

1.0

0.8
0.6
0.4
0.2
0 v T T T 1
uc MCcC

accuracy  sensitivity specificity A
@ LSTM-attention ProtBERT

BERTGAT

Fig. 2. Accuracy of the models
MMC - Matthews correlation coefficient.

0.96
0.94
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0.90

0.88
0.86
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LSTM-attention ProtBERT BERTGAT
= accuracy = sensitivity specificity AUC
Fig. 3. Bar chart of the accuracy of the models
ROC curve PR curve
1.0 1.0
0.8 0.8
Q
s
¢ 06 § 0.6
g 8
g 04 g 04
(]
2
+ 0.2 0.2
LSTM-attention LSTM-attention
ProtBERT ProtBERT
0 BERTGAT BERTGAT
00 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0
false positive rate recall

Fig. 4. Receiver-operating characteristic (ROC) and precision-recall (PR)
curves of the plot

Test accuracy curve Test loss curve
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Fig. 5. Epoch plot of all iterations with algorithms



270

interpretation of the results in the context of model archi-
tecture implications.’>%3 LSTM-attention utilizes long
short-term memory units and attention mechanisms,
while ProtBERT incorporates a transformer-based archi-
tecture, specifically designed for protein sequence data,
and BERTGAT incorporates graph attention mecha-
nisms. The higher accuracy of BERTGAT suggests that its
increased model complexity and ability to capture graph
structures in the data have contributed to improved per-
formance. Data representation is another important
factor to consider. The comparable accuracy of LSTM-
attention and ProtBERT suggests that their respective data
representations are effective for a given task. Biological
relevance is a critical consideration when evaluating model
performance. Protein sequence analysis is inherently
tied to biology, and it is important to assess how well the

positive classification

801 80
601 60
404 40
1 20
S 2 4 3
JEA &2 ;

negative classification

dazé 2iamad
101 m— BERTGAT © : 97 mm— ProtBERT ® :
101 M LSTM-attention L] 99 m— BERTGAT .
103 — ProtBERT @ : I OO W | STM-attention @ I I
100 o0 50 0

Fig. 6. UpSet intersection diagram of the models with positive and
negative classification
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models align with biological knowledge.>*525* While all
3 models demonstrated high accuracy, it is necessary to
delve deeper into the interpretation to understand if the
superior accuracy of BERTGAT is biologically relevant
or if other factors drive it. Overall, the observed perfor-
mance differences between LSTM-attention, ProtBERT
and BERTGAT highlight the impact of model complex-
ity, data representation and biological relevance. Further
analysis and interpretation are required to uncover the
specific advantages of each architecture and their implica-
tions in the context of protein sequence analysis.
Previous state-of-the-art models, like ProteinBERT,>>-%
a universal deep learning model for protein sequences,
leveraging the transformer architecture,’8-% are commonly
used in NLP tasks. In addition to language models, various
machine learning methods and algorithms are used in
protein sequence prediction, such as graph neural networks
and deep learning-based algorithms like BERTGAT and
LSTM-attention.'>*” ProtBERT is a transformer-based
language model trained on a large corpus of protein
sequences to learn representations that capture important
structural and functional information.?* This study com-
pared LLMs vs. GAT-based algorithms®”16? in predicting
AMR sequencing, and the performance of the model was
shown using the SHAP,**-% UMAP and UpSet plot analysis
(Fig. 6-8), similar to previous studies for performance.

LSTM-attention ProtBERT BERTGAT
20 ¢ - heg - heg 20 - heg
15 | 20 - 15
10 -
10 1 10 - 5 .
5 1 0 0 -
] -5 -
0 =10 | -10
, “ pos “ pos “ pos
-5 0 5 -10 0 10 0 10
Fig. 7. Uniform Manifold Approximation and Projection (UMAP) plot of the models
neg - negative; pos — positive.
3| 3 ° I = o o
1G4 - . © 34 - - . o . ©
: high : 54l -3, high : high Z
o - - ~ 41 4 — =
g 3 v 5 W $ oW 5 ow 5
i b 3 b 3’ o 3
J‘,“.': g [*=4 a3l ’ ;‘ = Y
£ Y - -: T b T ‘: - T Y T Y
-0.25 0 0.25 -0.25 0 0.25 -0.25 0 0.25

SHAP value for LSTM-attention

Fig. 8. Shapley Additive Explanations (SHAP) performance of the models

SHAP value for ProtBERT

SHAP value for BERTGAT
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Targeting P. gingivalis efflux proteins is important for
novel antibiotic drug design. These prediction models
could point to resistance mutation sequences and prevent
the development of AMR in periodontitis patients.®®¢”

This study compared the performance of LLMs and
GAT-based algorithms in predicting AMR sequencing.
The model’s performance was evaluated using the SHAP,
UMAP and UpSet plot analysis, previously employed
to assess the performance of similar prediction models.
The study also highlighted the significance of target-
ing P. gingivalis efflux proteins to design novel antibiotic
drugs. However, it is important to acknowledge that the
current study has limitations. One major limitation is the
small sample size and the lack of the external validation
of the independent datasets used in the study.>? Future re-
search should address this limitation by including larger
sample sizes to ensure the reliability and generalizability
of the prediction model. Furthermore, further investiga-
tions are needed to validate the model’s performance in
diverse datasets and to explore its applicability for other
oral microbes.

Conclusions

Preventing the spread of antimicrobial resistance
(AMR) is a primary global concern, and large language
models (LLMs), when applied clinically, may help prevent
this phenomenon.

Ethics approval and consent to participate

Not applicable.

Data availability

The datasets supporting the findings of the current
study are available from the corresponding author on
reasonable request.

Consent for publication

Not applicable.

Use of Al and Al-assisted technologies

Not applicable.

ORCID iDs

Pradeep Kumar Yadalam @ https://orcid.org/0000-0002-6653-4123
Prabhu Manickam Natarajan @ https://orcid.org/0000-0002-4780-0465
Naresh Shetty @ https://orcid.org/0000-0002-4596-5215

Maria Maddalena Marrapodi & https://orcid.org/0000-0002-9494-6942
Hande Uzungibuk @ https://orcid.org/0000-0001-9265-1772

Diana Russo @ https://orcid.org/0000-0002-0915-4642

Marco Ciccitu @ https://orcid.org/0000-0003-2311-9728

Giuseppe Minervini @ https://orcid.org/0000-0002-8309-1272

27

References

1. Inoue T, Nakayama M, Taguchi Y, et al. Characterization of the
tripartite drug efflux pumps of Porphyromonas gingivalis aTCC
33277. New Microbiol. 2015;38(1):101-108. PMID:25742153.

2. Grover V, Kapoor A, Malhotra R, Kaur G. Porphyromonas gingivalis
antigenic determinants - potential targets for the vaccine
development against periodontitis. Infect Disord Drug Targets.
2014;14(1):1-13. doi:10.2174/1871526514666140827100930

3. Van Camp PJ, Haslam DB, Porollo A. Prediction of antimicrobial
resistance in Gram-negative bacteria from whole-genome
sequencing data. Front Microbiol. 2020;11:1013. doi:10.3389/
fmicb.2020.01013

4. Peter S, Bosio M, Gross C, et al. Tracking of antibiotic resistance
transfer and rapid plasmid evolution in a hospital setting by
nanopore sequencing. mSphere. 2020;5(4):e00525-20. doi:10.1128/
mSphere.00525-20

5. Suzuki M, Hashimoto Y, Hirabayashi A, et al. Genomic
epidemiological analysis of antimicrobial-resistant bacteria with
nanopore sequencing. Methods Mol Biol. 2023;2632:227-246.
doi:10.1007/978-1-0716-2996-3_16

6. Kuang X, Wang F, Hernandez KM, Zhang Z, Grossman RL. Accurate
and rapid prediction of tuberculosis drug resistance from genome
sequence data using traditional machine learning algorithms and
CNN. Sci Rep. 2022;12(1):2427. d0i:10.1038/541598-022-06449-4

7. Ren Y, Chakraborty T, Doijad S, et al. Prediction of antimicrobial
resistance based on whole-genome sequencing and machine
learning. Bioinformatics. 2022;38(2):325-334. doi:10.1093/bioinfor-
matics/btab681

8. RahbeE, Watier L, Guillemot D, Glaser P, Opatowski L. Determinants
of worldwide antibiotic resistance dynamics across drug-bacterium
pairs: A multivariable spatial-temporal analysis using ATLAS. Lancet
Planet Health. 2023;7(7):e547-e557. doi:10.1016/52542-5196(23)00127-4

9. Yang F, Wang W, Wang F, et al. scBERT as a large-scale pretrained
deep language model for cell type annotation of single-cell RNA-
seq data. Nat Mach Intell. 2022;4:852-866. doi:10.1038/s42256-022-
00534-z

10. JiY, Zhou Z, Liu H, Davuluri RV. DNABERT: Pre-trained bidirectional
encoder representations from transformers model for DNA-
language in genome. Bioinformatics. 2021;37(15):2112-2120.
doi:10.1093/bioinformatics/btab083

11. SorinV, Barash Y, Konen E, Klang E. Large language models for onco-
logical applications.J Cancer Res Clin Oncol. 2023;149(11):9505-9508.
doi:10.1007/s00432-023-04824-w

12. Abd-Alrazaq A, AlSaad R, Alhuwail D, et al. Large language models in
medical education: Opportunities, challenges, and future directions.
JMIR Med Educ. 2023;9:e48291. doi:10.2196/48291

13. Mallio CA, Sertorio AC, Bernetti C, Zobel BB. Large language models
for structured reporting in radiology: Performance of GPT-4,
ChatGPT-3.5, Perplexity and Bing. Radiol Med. 2023;128(7):808-812.
doi:10.1007/s11547-023-01651-4

14. Yadalam PK, Trivedi SS, Krishnamurthi I, et al. Machine learning
predicts patient tangible outcomes after dental implant surgery. [EEE
Access. 2022;10:131481-131488. d0i:10.1109/ACCESS.2022.3228793.

15. Zhang K, Yu J, Liu J, et al. LGEANet: LSTM-global temporal
convolution-external attention network for respiratory motion
prediction. Med Phys. 2023;50(4):1975-1989. d0i:10.1002/mp.16237

16. Zheng K, Zhang XL, Wang L, You ZH, Zhan ZH, Li HY. Line graph
attention networks for predicting disease-associated Piwi-interacting
RNAs. Brief Bioinform. 2022;23(6):bbac393. doi:10.1093/bib/bbac393

17. Ming Y, Qian H, Guangyuan L. CNN-LSTM facial expression
recognition method fused with two-layer attention mechanism.
Comput Intell Neurosci. 2022;2022:7450637. doi:10.1155/2022/7450637

18. Gupta A, Kumar S, Gopi A, Sharma M, Patil S, Piplani A. Assessment
of knowledge, practices and attitudes of dentists toward corona-
virus disease while performing aerosol-generating procedures
in dentistry: A cross-sectional survey from India. Dent Med Probl.
2023;60(3):459-466. d0i:10.17219/dmp/156197

19. Dovigo S, Massariol M, Gandini A, Zuffellato N. Instantaneous dental
implant loading technique by fixed dentures: A retrospective
cohort study. Dent Med Probl. 2023;60(3):375-383. doi:10.17219/
dmp/154981



272

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Sanjuan-Navarro PS, Agudelo-Suérez AA, Mora-Cérdenas AL, et al.
Frequency of symptoms and the associated factors of eating
disorders in a group of dental students in Medellin, Colombia. Dent
Med Probl. 2023;60(3):401-411. d0i:10.17219/dmp/149900
Soundarajan S, Rajasekar A. Antibacterial and anti-inflammatory
effects of a novel herb-mediated nanocomposite mouthwash in
plaque-induced gingivitis: A randomized controlled trial. Dent Med
Probl. 2023;60(3):445-451. doi:10.17219/dmp/150728
Paradowska-Stolarz AM, Wieckiewicz M, Mikulewicz M, et al.
Comparison of the tensile modulus of three 3D-printable materials
used in dentistry. Dent Med Probl. 2023;60(3):505-511. doi:10.17219/
dmp/166070

Huang G, Luo W, Zhang G, et al. Enhancer-LSTMAtt: A Bi-LSTM and
attention-based deep learning method for enhancer recognition.
Biomolecules. 2022;12(7):995. doi:10.3390/biom12070995

Kwon HB, Choi SH, Lee D, et al. Attention-based LSTM for non-contact
sleep stage classification using IR-UWB radar. IEEE J Biomed Health
Inform. 2021;25(10):3844-3853. doi:10.1109/JBHI.2021.3072644

Li XY, Wang C, Xiang XR, Chen FC, Yang CM, Wu J. Porphyromonas
gingivalis lipopolysaccharide increases lipid accumulation by affecting
CD36 and ATP-binding cassette transporter A1l in macrophages.
Oncol Rep. 2013;30(3):1329-1336. d0i:10.3892/0r.2013.2600

Eick S, Mathey A, Vollroth K, et al. Persistence of Porphyromonas
gingivalis is a negative predictor in patients with moderate to
severe periodontitis after nonsurgical periodontal therapy. Clin
Oral Investig. 2017;21(2):665-674. doi:10.1007/s00784-016-1933-x
Bostanci N, Belibasakis GN. Porphyromonas gingivalis: An invasive
and evasive opportunistic oral pathogen. FEMS Microbiol Lett.
2012;333(1):1-9. d0i:10.1111/j.1574-6968.2012.02579.x

Yang Y, He X, Xia S, Liu F, Luo L. Porphyromonas gingivalis facilitated
the foam cell formation via lysosomal integral membrane protein 2
(LIMP?2). J Periodontal Res. 2021;56(2):265-274. doi:10.1111/jre.12812
Nufiez-Belmar J, Morales-Olavarria M, Vicencio E, Vernal R,
Cérdenas JP, Cortez C. Contribution of -omics technologies in the
study of Porphyromonas gingivalis during periodontitis pathogenesis:
A minireview. Int J Mol Sci. 2022;24(1):620. doi:10.3390/ijms24010620
Benahmed AG, Mujawdiya PK, Noor S, Gasmi A. Porphyromonas
gingivalis in the development of periodontitis: Impact on
dysbiosis and inflammation. Arch Razi Inst. 2022;77(5):1539-1551.
doi:10.22092/ARI.2021.356596.1875

Zenobia C, Hajishengallis G. Porphyromonas gingivalis virulence
factors involved in subversion of leukocytes and microbial dysbiosis.
Virulence. 2015;6(3):236-243. doi:10.1080/21505594.2014.999567
Ruan Q, Guan P, Qi W, et al. Porphyromonas gingivalis regulates
atherosclerosis through an immune pathway. Front Immunol.
2023;14:1103592. doi:10.3389/fimmu.2023.1103592

Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis:
Major periodontopathic pathogen overview. J Immunol Res.
2014;2014:476068. doi:10.1155/2014/476068

Latini Abreu MG, Kawamoto D, Alves Mayer MP, et al. Frequency
of Porphyromonas gingivalis fimA in smokers and nonsmokers
after periodontal therapy. J Appl Oral Sci. 2019;27:¢20180205.
doi:10.1590/1678-7757-2018-0205

Morandini AC, Ramos-Junior ES, Potempa J, et al. Porphyromonas
gingivalis fimbriae dampen P2X7-dependent interleukin-1(3 secretion.
J Innate Immun. 2014;6(6):831-845. doi:10.1159/000363338

Liu M, Shao J, Zhao Y, Ma B, Ge S. Porphyromonas gingivalis evades
immune clearance by regulating lysosome efflux. J Dent Res.
2023;102(5):555-564. doi:10.1177/00220345221146097

Puig-Silla M, Dasi-Fernandez F, Montiel-Company JM, Almerich-Silla JM.
Prevalence of fimA genotypes of Porphyromonas gingivalis and
other periodontal bacteria in a Spanish population with chronic
periodontitis. Med Oral Patol Oral Cir Bucal. 2012;17(6):e1047-e1053.
doi:10.4317/medoral.17009

Yadalam PK, Anegundi RV, Heboyan A. Prediction of druggable
allosteric sites of undruggable multidrug resistance efflux
pump P. gingivalis proteins. Biomed Eng Comput Biol.
2023;14:11795972231202394. doi:10.1177/11795972231202394
Uniprot Consortium. UniProt: The Universal Protein Knowledge-
base in 2023. Nucleic Acids Res. 2023;51(D1):D523-D531. doi:10.1093/
nar/gkac1052

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

PK. Yadalam et al. GATs and NLP for predicting the AMR of P, gingivalis

Wang R, Jiang Y, Jin J, et al. DeepBIO: An automated and interpretable
deep-learning platform for high-throughput biological sequence
prediction, functional annotation and visualization analysis.
Nucleic Acids Res. 2023;51(7):3017-3029. d0i:10.1093/nar/gkad 055
Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. ProteinBERT:
A universal deep-learning model of protein sequence and function.
Bioinformatics. 2022;38(8):2102-2110. doi:10.1093/bioinformatics/
btac020

Liu D, Xu H, Wang J, Lu Y, Kong J, Qi M. Adaptive Attention
Memory Graph Convolutional Networks for skeleton-based action
recognition. Sensors (Basel). 2021;21(20):6761. doi:10.3390/521206761
Yu R, Pan C, Fei X, Chen M, Shen D. Multi-graph attention
networks with bilinear convolution for diagnosis of schizophrenia.
IEEE J Biomed Health Inform. 2023;27(3):1443-1454. doi:10.1109/
JBHI.2022.3229465

Zhao Y, Wang L, Wang C, et al. Multi-granularity heterogeneous
graph attention networks for extractive document summarization.
Neural Netw. 2022;155:340-347. doi:10.1016/j.neunet.2022.08.021
Jia L, Han N, Du J, Guo L, Luo Z, Liu Y. Pathogenesis of important
virulence factors of Porphyromonas gingivalis via toll-like receptors.
Front Cell Infect Microbiol. 2019;9:262. doi:10.3389/fcimb.2019.00262
Aabed K, Moubayed N, BinShabaib MS, ALHarthi SS. Is a single session
of antimicrobial photodynamic therapy as an adjuvant to non-
surgical scaling and root planing effective in reducing periodontal
inflammation and subgingival presence of Porphyromonas
gingivalis and Aggregatibacter actinomycetemcomitans in patients
with periodontitits? Photodiagnosis Photodyn Ther. 2022;38:102847.
doi:10.1016/j.pdpdt.2022.102847

Pan C, Liu J, Wang H, Song J, Tan L, Zhao H. Porphyromonas
gingivalis can invade periodontal ligament stem cells. BMC Microbiol.
2017;17(1):38. d0i:10.1186/512866-017-0950-5

Wadhawan A, Reynolds MA, Makkar H, et al. Periodontal pathogens
and neuropsychiatric health. Curr Top Med Chem. 2020;20(15):1353-1397.
doi:10.2174/1568026620666200110161105

Griffen AL, Becker MR, Lyons SR, Moeschberger ML, Leys EJ.
Prevalence of Porphyromonas gingivalis and periodontal health
status. J Clin Microbiol. 1998;36(11):3239-3242. do0i:10.1128/
JCM.36.11.3239-3242.1998

Liu J, Gong X. Attention mechanism enhanced LSTM with residual
architecture and its application for protein-protein interaction
residue pairs prediction. BMC Bioinformatics. 2019;20(1):609.
doi:10.1186/512859-019-3199-1

Murakami N, Yoshikawa K, Tsukada K, et al. Butyric acid modulates
periodontal nociception in Porphyromonas gingivalis-induced
periodontitis. J Oral Sci. 2022;64(1):91-94. doi:10.2334/josnusd.21-0483
Lupo U, Sgarbossa D, Bitbol AF. Protein language models trained
on multiple sequence alignments learn phylogenetic relationships.
Nat Commun. 2022;13(1):6298. d0i:10.1038/541467-022-34032-y
Ferruz N, Schmidt S, Hocker B. ProtGPT2 is a deep unsupervised
language model for protein design. Nat Commun. 2022;13(1):4348.
doi:10.1038/541467-022-32007-7

Marks DS, Hopf TA, Sander C. Protein structure prediction from
sequence variation. Nat Biotechnol. 2012;30(11):1072-1080.
doi:10.1038/nbt.2419

Geffen Y, Ofran Y, Unger R. DistilProtBert: A distilled protein
language model used to distinguish between real proteins
and their randomly shuffled counterparts. Bioinformatics.
2022;38(Suppl 2):ii95-ii98. d0oi:10.1093/bioinformatics/btac474
Villegas-Morcillo A, Gomez AM, Sanchez V. An analysis of protein
language model embeddings for fold prediction. Brief Bioinform.
2022;23(3):bbac142. doi:10.1093/bib/bbac142

Long Y, Wu M, Liu Y, Kwoh CK, Luo J, Li X. Ensembling graph
attention networks for human microb—drug association prediction.
Bioinformatics. 2020;36(Suppl 2):i779-i786. doi:10.1093/bioinfor-
matics/btaa891

Perez R, Li X, Giannakoulias S, Petersson EJ. AggBERT: Best in class
prediction of xexapeptide amyloidogenesis with a semi-supervised
ProtBERT model. J Chem Inf Model. 2023;63(18):5727-5733.
doi:10.1021/acs.jcim.3c00817

Guntuboina C, Das A, Mollaei P, Kim S, Barati Farimani A.
PeptideBERT: A language model based on transformers for peptide
property prediction. J Phys Chem Lett. 2023;14(46):10427-10434.
doi:10.1021/acs.jpclett.3c02398



Dent Med Probl. 2025;62(2):265-273

60.

61.

62.

63.

64.

65.

66.

67.

Hallee L, Rafailidis N, Gleghorn JP. cdsBERT - extending protein
language models with Codon awareness [preprint]. bioRxiv. 2023.
doi:10.1101/2023.09.15.558027

Wang X, Ding Z, Wang R, Lin X. Deepro-Glu: Combination
of convolutional neural network and Bi-LSTM models using
ProtBert and handcrafted features to identify lysine glutarylation
sites. Brief Bioinform. 2023;24(2):bbac631. doi:10.1093/bib/bbac631
Choi J, Ko T, Choi Y, Byun H, Kim CK. Dynamic graph convolutional
networks with attention mechanism for rumor detection on
social media. PLoS One. 2021;16(8):0256039. doi:10.1371/journal.
pone.0256039

Wang K, Tian J, Zheng C, et al. Interpretable prediction of 3-year
all-cause mortality in patients with heart failure caused by coronary
heart disease based on machine learning and SHAP. Comput Biol
Med. 2021;137:104813. doi:10.1016/j.compbiomed.2021.104813
Fernandez MV, Gonzdlez de Aledo AL, Delgado Moya FdP, Badia IM.
SHAP model explainability in ECMO-PAL mortality prediction:
A critical analysis. Intensive Care Med. 2023;49(12):1559. doi:10.1007/
s00134-023-07252-z

Yi F, Yang H, Chen D, et al. XGBoost-SHAP-based interpretable
diagnostic framework for Alzheimer’s disease. BMC Med Inform
Decis Mak. 2023;23(1):137. doi:10.1186/512911-023-02238-9

Fan R, Zhou Y, Chen X, et al. Porphyromonas gingivalis outer
membrane vesicles promote apoptosis via msRNA-regulated DNA
methylation in periodontitis. Microbiol Spectr. 2023;11(1):e0328822.
doi:10.1128/spectrum.03288-22

Yadalam PK, Arumuganainar D, Anegundi RV, et al. CRISPR-Cas-based
adaptive immunity mediates phage resistance in periodontal red
complex pathogens. Microorganisms. 2023;11(8):2060. doi:10.3390/
microorganisms11082060



